Mastercam. 2020

IMPERIAL | TRAINING TUTORIAL SERIES

WIRE

WIRE TRAINING TUTORIAL

To order more books:

Call 1-800-529-5517 or

Visit www.emastercam.com or

Contact your Mastercam dealer

Mastercam 2020 Wire Training Tutorial

Copyright: 1998 - 2019 In-House Solutions Inc. All rights reserved

Software: Mastercam 2020

Authors: Mariana Lendel

ISBN: 978-1-77146-840-4

Date: September 5, 2019

Notice

In-House Solutions Inc. reserves the right to make improvements to this manual at any time and without notice.

Disclaimer Of All Warranties And Liability

In-House Solutions Inc. makes no warranties, either express or implied, with respect to this manual or with respect to the software described in this manual, its quality, performance, merchantability, or fitness for any particular purpose. In-House Solutions Inc. manual is sold or licensed "as is." The entire risk as to its quality and performance is with the buyer. Should the manual prove defective following its purchase, the buyer (and not In-House Solutions Inc., its distributer, or its retailer) assumes the entire cost of all necessary servicing, repair, of correction and any incidental or consequential damages. In no event will In-House Solutions Inc. be liable for direct, indirect, or consequential damages resulting from any defect in the manual, even if In-House Solutions Inc. has been advised of the possibility of such damages. Some jurisdictions do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you.

Copyrights

This manual is protected under International copyright laws. All rights are reserved. This document may not, in whole or part, be copied, photographed, reproduced, translated or reduced to any electronic medium or machine readable form without prior consent, in writing, from In-House Solutions Inc.

Trademarks

Mastercam is a registered trademark of CNC Software, Inc.

Microsoft, the Microsoft logo, are registered trademarks of Microsoft Corporation;

Windows 10 is a registered trademarks of Microsoft Corporation.

Wire Projects

Tutorial	Geometry Functions	Toolpath Creation
#1	Create Rectangle. Line Parallel. Trim. Translate. Create Thread Point. Create Cut Points.	Contour Wirepath.
#2	Create Rectangle. Line Parallel. Line Polar. Trim. Create Thread Point.	Contour Wirepath. Edit the wirepath with Change at Point.
#3	Create Rectangle. Circle Center Point. Line Polar. Arc Tangent. Line Tangent. Trim. Mirror. Rotate. Create Thread Point.	Contour Wirepath to cut the inner profile. Contour Wirepath to cut the outer profile.
#4	Create Rectangle. Circle Center Point. Line Polar. Arc Tangent. Line Tangent. Trim. Mirror. Rotate. Create Thread Point.	Contour Wirepath to cut the inner profile. Contour Wirepath to cut the outer profile.

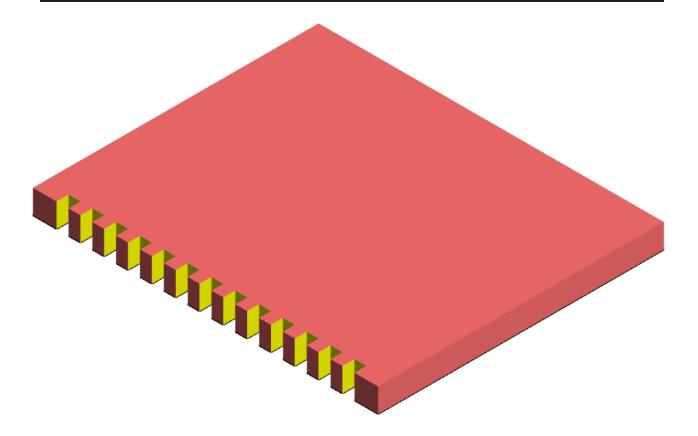
Tutorial	Geometry Functions	Toolpath Creation
#5	Create Rectangle. Circle Center Point. Arc Tangent. Fillet. Trim. Mirror. Create Thread Point.	4-Axis Wirepath
#6	Create Rectangle. Circle Center Point. Line Polar. Line Parallel. Trim. Bolt Circle.	Wire No Core Wirepath.

Table Of Contents

Wire Projects	3
Getting Started	
Objectives	14
Step 1: Starting Mastercam	14
Step 2: GUI - Graphical User Interface	15
Step 3: Navigate Through Mastercam	16
Step 4: Set The Attributes	19
Step 5: Manager Panels	21
Step 6: Setting Mastercam To Imperial	23
Step 7: Set The Grid	25
Tutorial 1	27
Overview Of Steps Taken To Create The Part Geometry:	28
Tutorial #1 Drawing	29
Step 1: Setting Up The Graphical User Interface	30
Step 2: Create The 3.625" By 3.0" Rectangle	30
Step 3: Create Parallel Lines	32
Step 4: Trim The Lines	37
Step 5: Translate/Copy The Shape	41
Step 6: Trim The Lines Using Trim 2 Entities Command	43
Step 7: Create The Thread And The Cut Points	45
Step 8: Save The File	50
Step 9: Select The Machine And Set Up The Stock	51
Step 10: Machine The Open Profile Using Contour Wirepath	51
Step 11: Backplot The Wirepath	65
Step 12: Verify The Wirepath	68
Step 13: Post The File To Generate The NC Code	75

Step 14: Save The Updated MCAM File	76
Review Exercise - Student Practice	77
Create The Geometry For Tutorial #1 Exercise	78
Tutorial 2	83
Geometry Creation	86
Step 1: Setting Up The Graphic User Interface	86
Step 2: Create A Rectangle	86
Step 3: Create Parallel Lines	
Step 4: Create A Polar Line	96
Step 5: Trim Three Entities And Divide/Delete	98
Step 6: Create The Thread Point	103
Step 7: Save The File	
Step 8: Select The Machine And Set Up The Stock	106
Step 9: Machine The Blanking Die Using Contour Wirepath	106
Step 10: Backplot The Wire Contour Wirepath	119
Step 11: Verify The Wirepath	124
Step 12: Post The File To Generate The NC Code	132
Step 13: Save The Updated MCAM File	133
Reveiw Exercise - Student Practice	134
Create The Geometry For Tutorial #2 Exercise	135
Create The Toolpaths For Tutorial #2 Exercise	136
Notes:	137
Tutorial #2 Quiz	138
Tutorial 3	139
Geometry Creation	142
Step 1: Setting Up The Graphic User Interface	
Step 2: Create A Rectangle	142
Step 3: Create 2 Circles Knowing The Diameter And The Center Location	144

Step 4: Create A Polar Line	146
Step 5: Create An Arc Tangent To One Entity	148
Step 6: Create The Thread Point	152
Step 7: Trim Two Entities	155
Step 8: Mirror The 0.1875" Radius Arc And The Tangent Line About A Line	157
Step 9: Create An Arc Tangent To Three Entities	160
Step 10: Delete The Construction Circles And The Line	162
Step 11: Trim Three Entities	163
Step 12: Rotate/Copy The Tooth	165
Step 13: CREATE THE 1.0" DIAMETER CIRCLE	169
Step 14: Create Parallel Lines	170
Step 15: Delete The Construction Lines	174
Step 16: Use Trimming Commands To Clean The Keyway	175
Step 17: Create The Thread Points	179
Step 18: Save The File	183
Step 19: Select The Machine And Set Up The Stock	184
Step 20: Machine The Inner Profile Using Contour Wirepath	184
Step 21: Backplot The Wire Contour Wirepath	197
Step 22: Machine The Outer Profile Using Contour Wirepath	200
Step 23: Verify The Toolpath	214
Step 24: Post The File To Generate The NC Code	220
Step 25: Save The Updated MCAM File	221
Review Exercise - Student Practice	222
Create The Geometry For Tutorial #3 Exercise	223
Create The Toolpaths For Tutorial #3 Exercise	224
Notes:	226
Tutorial #2 Quiz	227


7	Tutorial 4	
	Geometry Creation	232
	Step 1: Setting Up The Graphic User Interface	. 232
	Step 2: Create A Rectangle	232
	Step 3: Create Parallel Lines For The Outside Profile	. 234
	Step 4: Create A Line	. 240
	Step 5: Clean Up The Outside Profile Using Trim Two Entities	242
	Step 6: Create Parallel Lines For The Inside Profile	245
	Step 7: Clean The Inside Profile Using Trim Three Entities	249
	Step 8: Delete The Construction Lines	. 251
	Step 9: Mirror The Geometry About X-axis And Y-axis	. 252
	Step 10: Create The Thread Points	. 256
	Step 11: Save The File	262
	Step 12: Select The Machine And Set Up The Stock	. 263
	Step 13: Machine Multiple Contours Using Contour WIrepath	266
	Step 14: Backplot The Wire Contour Wirepath	. 278
	Step 15: Machine The Outer Profile With Multiple Tabs	280
	Step 16: Verify The Wirepath	296
	Step 17: Post The File To Generate The NC Code	. 300
	Step 18: Save The Updated MCAM File	301
	Review Exercise - Student Practice	302
	Create The Geometry For Tutorial #3 Exercise	. 303
	Create The Toolpaths For Tutorial #4 Exercise	. 304
	Notes:	306
	Tutorial #4 Quiz	307
Tutorial 5		. 309
	Geometry Creation	312
	Step 1: Setting Up The Graphic User Interface	. 312

	Step 2: Change The Z Depth Of The Cplane And Switch To 2d Mode	. 312
	Step 3: Create The 0.5625" Radius Circles	. 312
	Step 4: Create Fillets With The Radius 0.025"	.315
	Step 5: Change The Z Depth Of The Cplane To Z 0.0	. 318
	Step 6: Create The 0.3625" Radius Circle	. 318
	Step 7: Create The 1.25" Radius Tangent Through A Point Arc	. 320
	Step 8: Clean The Geometry Using Trim Divide/delete	. 322
	Step 9: Mirror The Geometry About Y-axis	324
	Step 10: Create Fillets With The Radius 0.025" And 0.05"	. 326
	Step 11: Create Branch Lines	330
	Step 12: Create The Stock Rectangle	341
	Step 13: Create The Thread Point	. 343
	Step 14: Save The File	346
	Step 15: Select The Machine And Set Up The Stock	.347
	Step 16: Machine The Part Using 4-Axis Wirepath	347
	Step 17: Backplot The Wire Contour Wirepath	.359
	Step 18: Verify The Wirepath	. 361
	Step 19: Post The File To Generate The NC Code	.366
	Step 20: Save The Updated MCAM File	367
	Review Exercise - Student Practice	. 368
	Create The Geometry For Tutorial #5 Exercise	.369
	Create The Toolpaths For Tutorial #5 Exercise	.370
	Notes:	. 371
	Tutorial #5 Quiz	372
T	utorial 6	.373
	Geometry Creation	. 376
	Step 1: Setting Up The Graphic User Interface	.376

	Step 2: Create The 3.0" By 2.0" Rectangle	. 376
	Step 3: Create The 0.2" Diameter Circle	.378
	Step 4: Create The Three 0.2" Diameter Circles On A Bolt Circle	380
	Step 5: Create A Line Given The Endpoint	. 382
	Step 6: Create Parallel Lines	. 383
	Step 7: Delete The Construction Line	385
	Step 8: Rotate/Copy	. 387
	Step 9: Clean The Geometry Using Divide/Delete	389
	Step 10: Save The File	. 394
	Step 11: Select The Machine And Set Up The Stock	. 395
	Step 12: Machine The Part Using No Core Wirepath	. 395
	Step 13: Backplot The Wire Contour Wirepath	. 402
	Step 14: Verify The Wirepath	404
	Step 15: Post The File To Generate The NC Code	. 409
	Step 16: Save The Updated MCAM File	. 410
	Review Exercise - Student Practice	411
	Create The Geometry For Tutorial #5 Exercise	. 412
	Create The Toolpaths For Tutorial #6 Exercise	. 413
	Notes:	414
	Tutorial #6 Quiz	.415
C	Quiz Answers	417

Tutorial 1

OVERVIEW OF STEPS TAKEN TO CREATE THE PART GEOMETRY:

From Drawing to CAD Model:

- ♦ The student should examine the drawing on the following page to understand what part is being created in the tutorial.
- From the drawing we can decide how to create the geometry in Mastercam.

Create the 2D CAD Model used to generate Wirepaths from:

- ◆ The student will create the Top 2D geometry needed to create the wirepaths.
- Geometry creation commands such as Create Rectangle, Line Parallel, Trim, Translate, Create Thread Point, and Create Cut Points will be used.

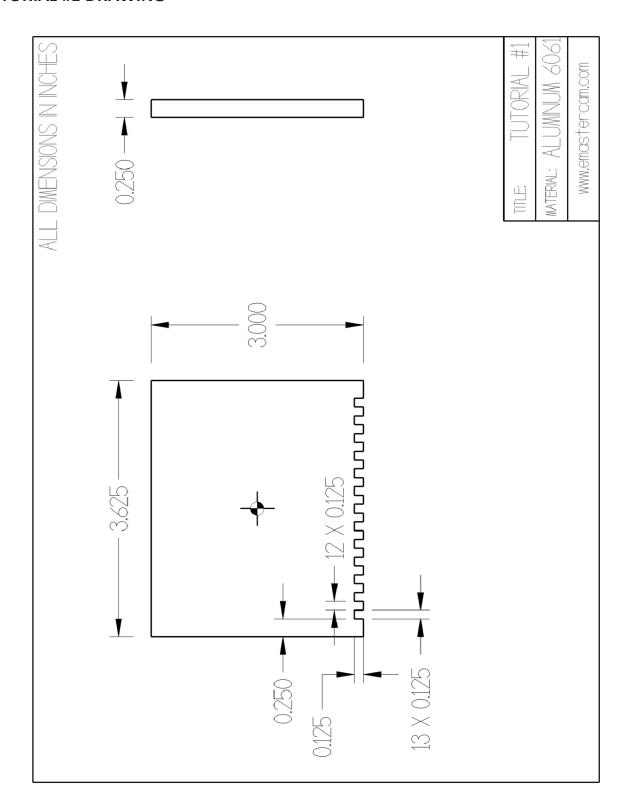
Create the necessary Wirepaths to machine the part:

♦ A Contour wirepath for open contour will be created to remove the material.

Backplot and Verify the file:

- ♦ The Backplot will be used to simulate a step-by-step process of the wire's movements.
- The Verify will be used to watch the wire machine the part out of a solid model.

Wire

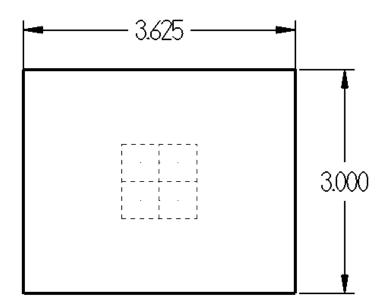

Post Process the file to generate the G-code:

♦ The student will post process the file to obtain an NC file containing the necessary code for the machine.

Mastercam 2020

Tutorial 1 Tutorial #1 Drawing

TUTORIAL #1 DRAWING

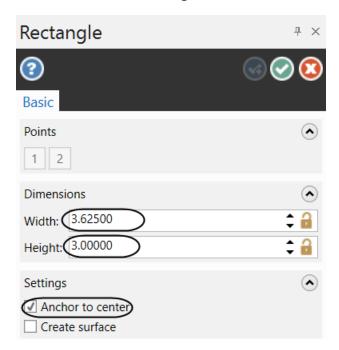

STEP 1: SETTING UP THE GRAPHICAL USER INTERFACE

Please refer to the **Getting Started** section for more info on how to set up the graphical user interface.

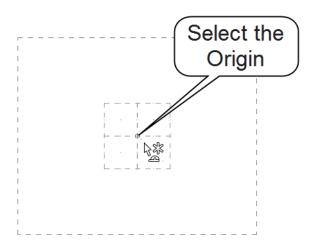
STEP 2: CREATE THE 3.625" BY 3.0" RECTANGLE

In this step, you will learn how to create a rectangle given the width, the height, and the anchor position.

Step Preview:



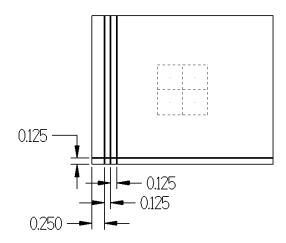
Wireframe


♦ From the **Shapes** group, select the **Rectangle** icon.

• Enter the Width and Height and enable Anchor to center as shown.

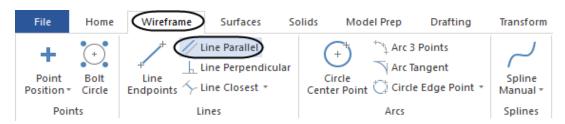
• [Select position of base point]: Select the **Origin** as shown.

- ◆ Select the **OK** button to exit the **Rectangle** command.
- ♦ Press **Alt+F1** to fit the rectangle to the screen.

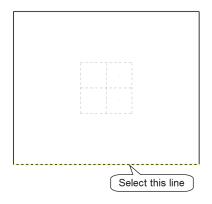

Note: While creating the geometry for this tutorial, if you make a mistake, you can undo the last step by using the **Undo** icon. You can undo as many steps as needed. If you delete or undo a step by mistake, just use the **Redo** icon. To delete unwanted geometry, select the geometry first and then press **Delete** on the keyboard.

Note: In the next few steps, you will create the profile with 13 identical shapes. You will create one shape first, and then, by using the **Translate** command with the **Copy** option, generate the other twelve shapes.

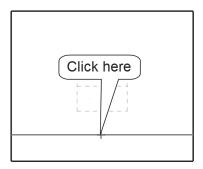
STEP 3: CREATE PARALLEL LINES

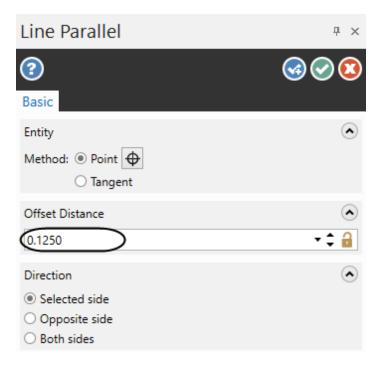

In this step you will create the four parallel lines that will be used to create one of the shapes.

Step Preview:

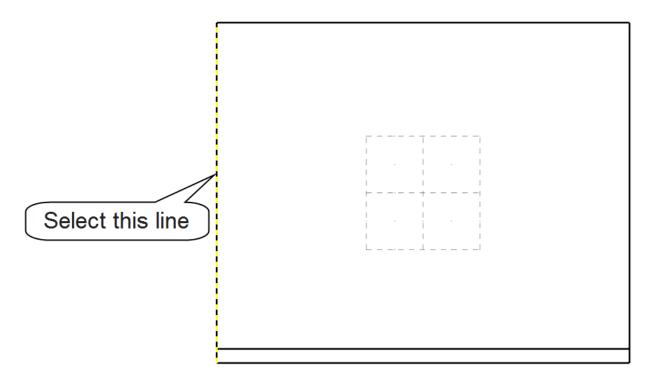


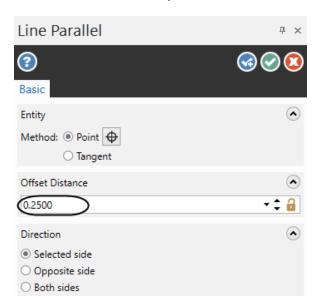
Wireframe


♦ From the **Lines** group, select **Line Parallel**.

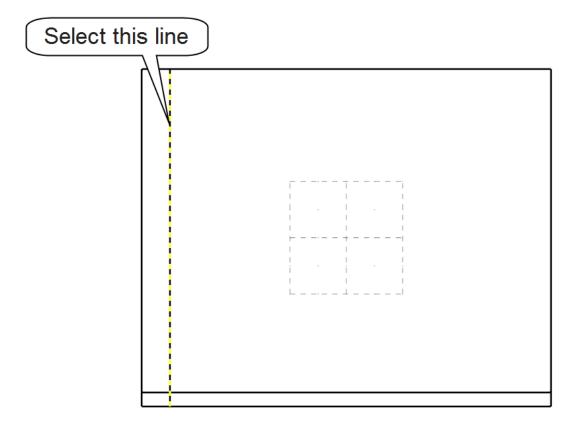

• [Select a line]: Select the lower horizontal line of the rectangle as shown.

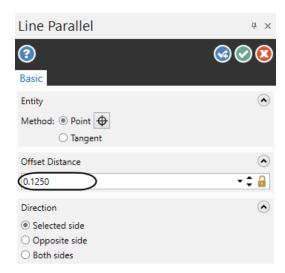
• [Select the point to place a parallel line through]: Select a point above the line as shown.


♦ Under Offset Distance, enter 0.125 as shown. Press Enter.

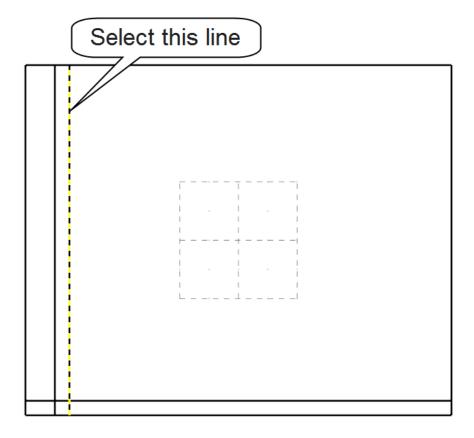

♦ Select **OK and Create New Operation** to stay in the command.

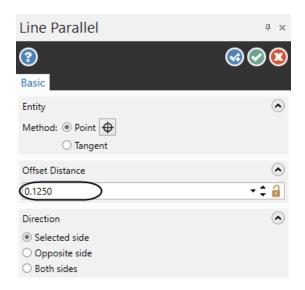
• [Select a line]: Select the left side vertical line of the rectangle as shown.


- [Select the point to place a parallel line through]: Select a point to the right of the selected line.
- ♦ Under Offset Distance, enter 0.25 as shown. Press Enter.


♦ Select **OK and Create New Operation** to stay in the command.

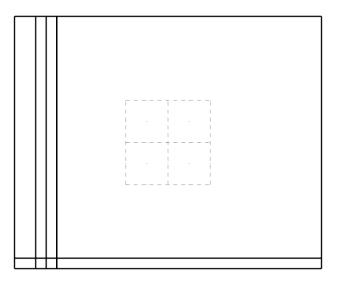
• [Select a line]: Select the vertical line that you just created as shown.


- [Select the point to place a parallel line through]: Select a point to the right of the selected line.
- ♦ Under Offset Distance, enter 0.125 as shown. Press Enter.


♦ Select **OK and Create New Operation** to stay in the command.

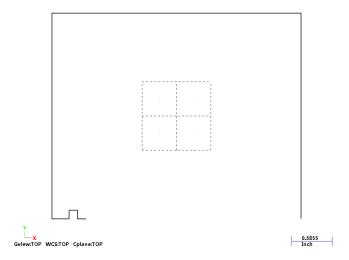
• [Select a line]: Select the vertical line that you just created as shown.

- [Select the point to place a parallel line through]: Select a point to the right of the selected line.
- ♦ Under Offset Distance, enter as shown. Press Enter.



♦ Select **OK** to exit the command.

Tutorial 1 Step 4: Trim The Lines


♦ The geometry should look as shown.

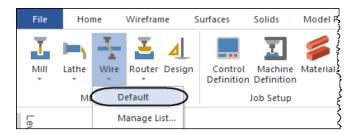
STEP 4: TRIM THE LINES

This step shows how to use the **Trim 3 Entities** and the **Divide/delete** commands to clean up the shape.

Step Preview:

Note: During the trimming process it is very important to select the entities exactly in the order and at the locations as shown in the graphics on the following pages.

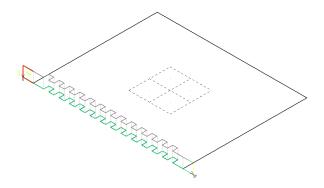
Trim 3 entities command requires a special selection. The first two entities that you select are trimmed to the third, which acts as a trimming curve. The third entity is then trimmed to the first two.


STEP 9: SELECT THE MACHINE AND SET UP THE STOCK

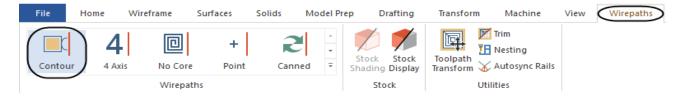
In Mastercam, you select a Machine Definition before creating any toolpaths. The Machine Definition is a model of your machine tool's capabilities, features, and it acts like a template for setting up machining jobs. The machine definition ties together three main components: the schematic model of your machine tool's components, the control definition that models your control unit's capabilities, and the post processor that will generate the required machine code (G-code). For the purpose of this tutorial, we will be using the Wire Default machine.

Note: If you already have a wire in the **Toolpaths Manager**, do not select another machine. Expand **Properties** and select **Files**. When the **Machine Group Properties** dialog box appears, on the **File** tab select **Replace** button under the **Machine - Toolpath Copy** section, and open the file of WIRE DEFAULT MM.MCAM-WMDWIRE DEFAULT.MCAM-WMD. Once finished, select OK to exit the dialog box. Otherwise, please follow next step.

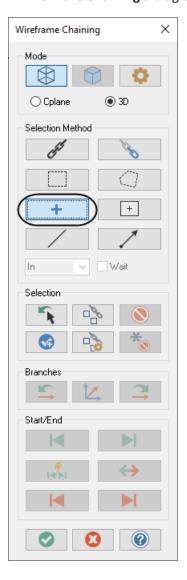
Machine


♦ From the Machine Type group, click on the pull down arrow under Wire and select Default as shown.

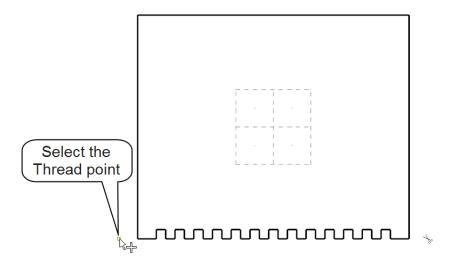
STEP 10: MACHINE THE OPEN PROFILE USING CONTOUR WIREPATH


Contour Wirepaths have the same general shape in both the XY plane (the lower contour) and the UV plane (the upper contour). Contour wirepaths can taper inward or outward, and you can specify the location of the land, the point at which the taper begins. You can further modify the shape of the contour wirepath by specifying how Mastercam handles sharp and smooth corners. A contour wirepath can also be based on an open boundary and used for cutting off or trimming a part.

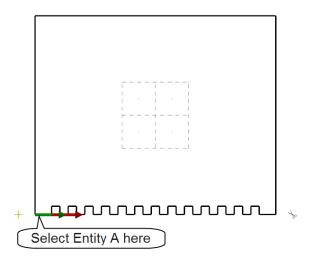
Toolpath Preview:



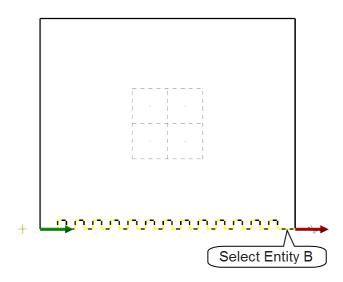
Wirepaths


♦ From the **Wirepaths** group, select **Contour**.

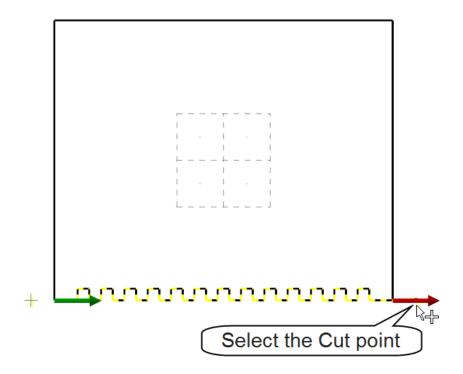
• From the **Chaining** dialog box, select the **Point** button.


• [Contour: select chain 1]: Select the thread point as shown.

• From the **Chaining** dialog box, select the **Partial Chain** button.

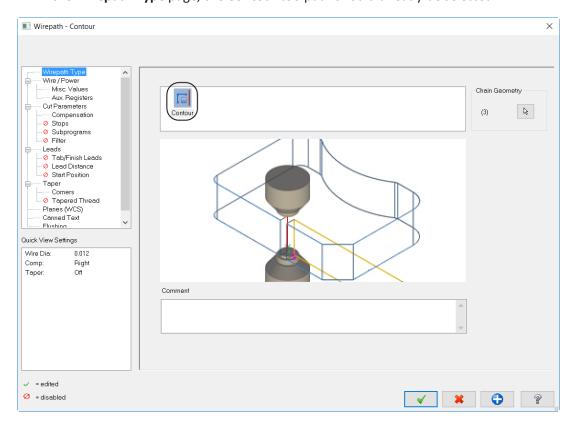

♦ [Select the first entity]: Select Entity A as shown.

♦ The direction of the chain should be toward the right. Otherwise use the **Reverse** button.

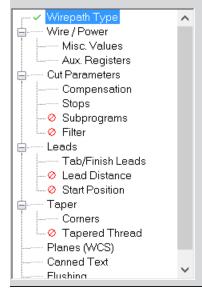

♦ [Select the last entity]: Select Entity B as shown.

♦ From the **Chaining** dialog box, select the **Point** button.

• [Contour: select chain 3]: Select the **Cut point** as shown.

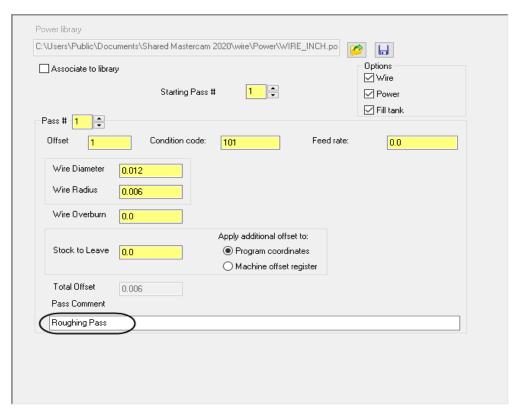


• Select the **OK** button to exit from the **Chaining** dialog box.



10.1 Wirepath Type

• In the Wirepath Type page, the Contour toolpath should already be selected.


Note: Mastercam updates the pages as you modify them and then marks them, in the **Tree View** area, with a green check mark. Pages that are not enabled are marked with a red circle and slash.

10.2 Set the Wire/Power parameters

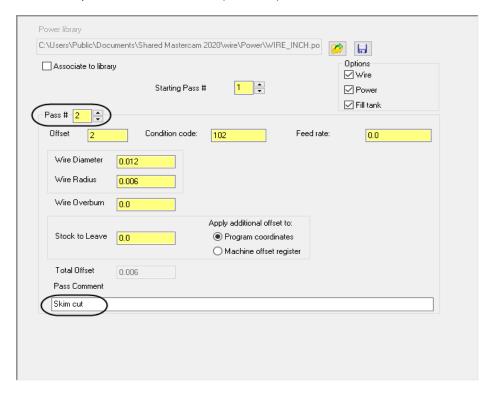
The **Wire/Power** page allows you to choose a wire power settings library file and use its values for the wirepath operation. You can also set the pass number to use for the first pass of the wirepath, and specify the settings for a single pass. To edit the power settings for each pass you have to disassociate the wirepath from the power settings library by unselecting the **Associate to library** check box.

- ◆ From the **Tree View** area, select **Wire/Power**.
- ◆ Set the parameters for **Pass #1** (Roughing Pass) as shown below.

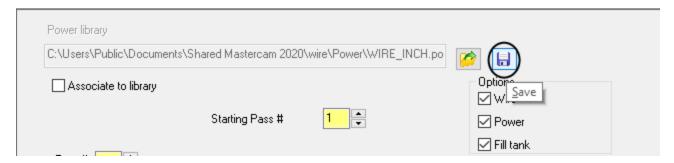
Pass # is used to enter the pass number to edit the settings for a single pass in the current library.

Offset allows you to set the wire offset register number. You may need to refer to your wire machine documentation for this information.

Condition Code is a wire machine-specific value that corresponds to a register number. Refer to your wire machine documentaion codes for material and wire type and thickness.


Feed rate is available if needed by the controller. Most EDMs do not use a feed rate.

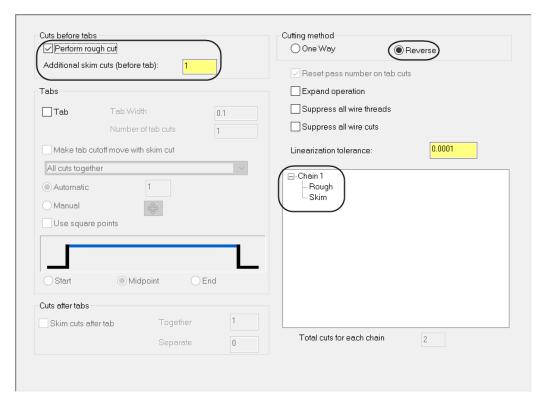
Wire diameter/radius sets the wire diameter/radius value and is automatically updated when one of the values is entered.


Wire overburn sets the amount of material beyond the wire diameter that can be removed.

Stock to Leave sets the amount of stock to leave for all passes. Stock to Leave offsets the wire in the direction specified by the Compensation Direction. In our case is set to 0.0 because this parameter is commonly set at the controller.

- ◆ Select the upper arrow and change the **Pass #** to **2**.
- ♦ Set the parameters for **Pass #2** (Skim cut) as shown.

Note: If you want to save this power library for other jobs, you can select the **Save** icon as shown in the image below. For the purpose of this tutorial, we will not save the power library. The Power folder will automatically be opened, and in the File name field you can enter the name of the library and then save it.



10.3 Set the Cut Parameters

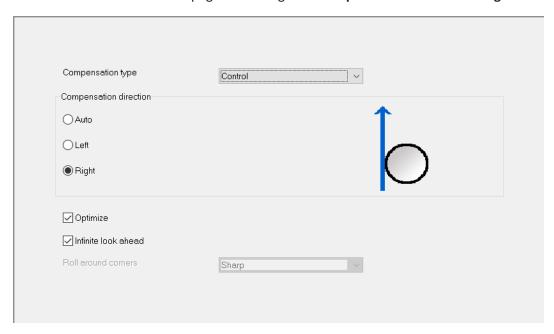
The **Cut Parameters** page is used to define the type and the number of cuts you will make in the wirepath, to control the stop codes, to suppress thread or cut flags. You can also divide the cuts into separate operations.

Mastercam Wire supports three main categories of cuts: rough and skim cuts before the tab, tab cuts, and skim cuts after the tab. The **Cut Parameters** page lists the programmed cuts and indicates their grouping as operations.

- ◆ From the Tree View area, select Cut Parameters.
- Change the parameters to make one rough pass and one finish pass.

Perform rough cut is used to create a rough cut for the contour. The rough cut uses the Starting Pass # from the Wire power settings library.

Additional skim cuts (before tab) allows you to enter the number of passes before cutting the tab.


Cutting method set to **Reverse** is used when multiple passes are set for the toolpath. With Reverse enabled, Mastercam reverses the direction of the previous pass at the end of the contour or at the tab.

Note: For this part you do not need to add a tab on the contour as the part can be clamped from the opposite side, which is not machined in this operation.

10.4 Set the Compensation parameters

Compensation page allows you to set the compensation method by which Mastercam Wire offsets the wire from the wirepath. Choose to offset the wire to the right or left of the wirepath. You can eliminate arcs in the wirepath that are less than or equal to the radius of the wire, or insert arc moves around corners in the wirepath. It also allows you to check for and eliminate unwanted intersections in the wirepath.

- ♦ From the **Tree View** area, select **Compensation**.
- ♦ Select the **Cut Parameters** page and change the **Compensation** direction to **Right** as shown.

Compensation type sets to **Control** outputs control codes for compensation and does not compute the compensated wirepath.

Compensation direction allows you to offset the wire to the right or left of the wirepath. **Auto** sets the compensation direction depending on the location of the thread point inside or outside of the contour.

Optimize eliminates arcs in the wirepath that are less than or equal to the radius of the wire.

Infinite look ahead checks for wirepath self-intersections along the entire contour before creating the wirepath. If Mastercam Wire finds a wirepath intersection, it modifies the wirepath so that it does not cut the portion of the part that comes after the intersection.

Roll around corners inserts arc moves around corners in the wirepath. The radius of the arc moves equals the radius of the wire. Not available with compensation type set to **Control**.