Mastercam. 2020

IMPERIAL | PROFESSIONAL COURSEWARE

INTELLIBITION OF THE PROPERTY OF THE PROPERTY

MILL ADVANCED PROFESSIONAL COURSEWARE

To order more books:

Call 1-800-529-5517 or

Visit www.emastercam.com or

Contact your Mastercam dealer

Mastercam 2020 Mill Advanced Professional Courseware

Copyright: 1998 - 2020 In-House Solutions Inc. All rights reserved

Software: Mastercam 2020

Date: August 19, 2019

ISBN: 978-1-77146-859-6

Notice

In-House Solutions Inc. reserves the right to make improvements to this manual at any time and without notice.

Disclaimer Of All Warranties And Liability

In-House Solutions Inc. makes no warranties, either express or implied, with respect to this manual or with respect to the software described in this manual, its quality, performance, merchantability, or fitness for any particular purpose. In-House Solutions Inc. manual is sold or licensed "as is." The entire risk as to its quality and performance is with the buyer. Should the manual prove defective following its purchase, the buyer (and not In-House Solutions Inc., its distributor, or its retailer) assumes the entire cost of all necessary servicing, repair, of correction and any incidental or consequential damages. In no event will In-House Solutions Inc. be liable for direct, indirect, or consequential damages resulting from any defect in the manual, even if In-House Solutions Inc. has been advised of the possibility of such damages. Some jurisdictions do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you.

Copyrights

This manual is protected under International copyright laws. All rights are reserved. This document may not, in whole or part, be copied, photographed, reproduced, translated or reduced to any electronic medium or machine readable form without prior consent, in writing, from In-House Solutions Inc.

Trademarks

Mastercam is a registered trademark of CNC Software, Inc.

Microsoft, the Microsoft logo, MS, and MS-DOS are registered trademarks of Microsoft Corporation;

N-See is a registered trademark of Micro compatibles, Inc.; Windows 7 and Windows 8 are registered trademarks of Microsoft Corporation.

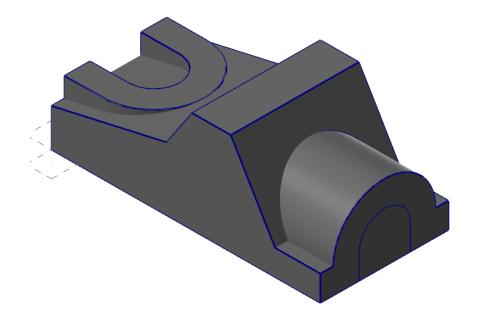
Table Of Contents

Getting Started	11
Introduction "What Is "Mastercam"?	12
The Mastercam® User Interface	13
Setting The Grid	14
Home Tab Attributes, Organize Groups And The Mini Toolbar	15
Data Entry Shortcuts	17
The Right Mouse Click Menu	18
AutoCursor	19
Introduction To The Graphic Views, Planes & The Coordinate Systems	20
Mastercam® Parameter Dialog Boxes	21
Mastercam® Work Flow:	22
Surface Toolpath Descriptions	27
Conventions Used In This Book	
About Planes & Views	33
Introduction	34
Set PreDefined Planes And Create New Planes	36
Graphics View	36
Construction Plane (Cplane)	37
Tool Plane (TPlane)	38
About Construction Depth (Z Depth)	39
Standard Construction Planes	41
Creating A New Construction Plane	43
Planes From Geometry	44
Dynamic Planes	46
Planes By Normal	52

3D Wireframe & Solid Geometry Creation	55
Introduction	56
Create Drawing #1 Wireframe	58
Create Drawing #1 Solid	61
Create Drawing #2 Wireframe	63
Create Drawing #2 Solid	64
Create Drawing #3 Wireframe	66
Create Drawing #3 Solid	68
Create Drawing #4 Wireframe	69
Create Drawing #4 Solid	71
Create Drawing #5 Wireframe	72
Create Drawing #5 Solid	75
Create Drawing #6 Wireframe	77
Create Drawing #6 Solid	80
Creating Curves	83
Create A Curve On One Edge	84
Create Curves On All Edges	84
Create A Curve At The Intersection Between Two Surfaces	84
Create Drawing #7 Wireframe	85
Create Drawing #7 Solid	89
Surface Pocket, Area Rough, Contour, Waterline, Scallop & Pencil Toolpaths	93
About Surface Toolpaths	94
High Speed Surface Toolpaths	94
Mastercam® Surface Toolpath Work Flow	96
Surface Roughing Toolpath Process	97
Surface High Speed Toolpath Process	101
Toolpath Used	106
Surface Rough Pocket A Boss Shape	110

Surface High Speed Area Roughing To Machine A Boss Shape	118
Surface Finish Contour	124
Surface High Speed Waterline	131
Surface High Speed Scallop	135
Surface High Speed Pencil	138
Geometrical Surface Creation	143
Introduction	144
Revolved Surfaces & Solids	149
Create Surface Drawing #1	149
Create The Solid For The Surface Drawing #1	152
Create Surface Drawing #2	153
Create The Solid For The Surface Drawing #2	154
Draft Surfaces	155
Create Surface Drawing #3	155
Flat Boundary Surface	156
Extruded Surface	158
Creating Primitives	159
Create A Sphere	159
Create A Torus	160
Create A Cylinder	160
Area Roughing - Rest Material, Stock Model, Hybrid & Scallop - Rest Passes	161
Introduction	162
Toolpath Used	163
Surface High Speed Area Roughing To Machine Cavities	167
Surface High Speed Area Roughing - Rest Material	170
Stock Model	173
Surface High Speed Hybrid	175

Surface High Speed Scallop Rest Passes	
Equal Scallop With Curves	
Introduction	
Toolpath Used	
Surface High Speed OptiRough Review	186
Surface High Speed Equal Scallop	190
Free Form Surfaces Creation - Part 1	197
Introduction	198
Lofted/Ruled Surfaces & Solids	202
Create A Ruled Surface	203
Create A Loft Surface	204
Create A Ruled Solid	205
Create A Lofted Solid	205
Ruled Synchronization	206
Ruled/Loft Window Selection	208
Net Surfaces	209
Create Surface Drawing #5	209
Solid Trimmed With A Net Surface	212
Window Selection	213
Net Surfaces Using Styles	215
Net Surface With Appex Points	217
Create Surface Drawing #6	218
Create Surface Drawing #7	220
Power Surfaces	221
Power Surface Geometry	221
Power Surface And UV Control Points	222
Using Surface Vector Or Plain Of Chain	223
X- Axis Projection Versus Surface Vector	224


Power Surface Trimming Options	225
OptiRough, Horizontal Area & Project	227
Introduction	228
Toolpath Used	229
Surface High Speed Dynamic OptiRough	232
Stock Model	237
Surface High Speed Horizontal Area	238
Surface High Speed Scallop - The Boss Shape Only	242
Surface High Speed Scallop (Rest Passes) - Creating A Fillet	245
Surface High Speed Project - Engrave Letters	248
Free Form Surfaces Creation - Part 2	251
Introduction	252
Sweep Surfaces & Solids	256
Sweep - One Across And Two Along Contours	256
Sweep - Two Across And One Along Contours	257
Sweep - Two Across Closed Contours Rotate Along One	258
Sweep - One Across Contour And One Along Contour	259
Create Surface Drawing #8	261
Create Surface Drawing #9	262
Sweep Surfaces And Curves Review	264
Create A Sweep Solid	268
Solids Sweep Options	273
Fence Surfaces	279
Fence Surface Options	279
Review Dynamic OptiRough & Hybrid	281
Toolpaths Used	282
Surface High Speed Dynamic OptiRough - Pocket Shape	285

Surface High Speed Dynamic OptiRough - Rest Material	290
Stock Model	292
Finish The Cavity With Surface High Speed Hybrid	293
Derived Surfaces	297
Introduction	298
Instructor Demonstration:	299
Offset Surfaces	300
Create Surface Drawing #11	300
Trim To Curves	302
Trim Surface To Surface	306
Trim Surface To Plane	310
Trim Surface To Plane & Create Fillet Surface	310
Fillet Surfaces	314
Create A Fillet Surface Between Two Sets Of Surfaces	314
3 Fillet Blend Surface	321
Review Surfaces	332
Review HS Horizontal & Waterline	333
Toolpath Used	334
Instructor Demonstration	336
Surface High Speed Dynamic OptiRoug Review	337
Surface High Speed Dynamic OptiRough - Rest Material	339
Surface High Speed Waterline Review	341
Surface High Speed Horizontal Area Review	343
Spiral, Hybrid Max TP & Transform Rotate	345
Toolpaths Used	346
Create A Stock Model To Be Used In A Toolpath	351
OptiRough Rest Material Calculated From Stock Model	352
Surface High Speed Spiral	355

Surface High Speed Waterline Review	358
Finish One Pocket Using Surface HS Hybrid	360
Semifinish The Pocket Using Maximum Stock Engagement	362
Transform Rotate Toolpath	363
Surface Finish Toolpaths & Compare To Model	365
Toolpaths Used	366
Surface Rough Pocket A Cavity Shape	369
Surface Finish Flowline Toolpath	372
Surface High Speed Radial Toolpath	377
Surface Finish Blend Toolpath	381
Compare To Model	383
Surface Plunge, Raster, Pencil & Project Toolpath	387
Toolpath Used	388
Surface Rough Plunge Toolpath	391
Surface High Speed Raster	394
Surface High Speed Pencil With Limited Passes	398
Surface High Speed Finish Project Curves	401
Surface High Speed Project A Toolpath	403
OptiRough Rest Material From An STL File	407
Toolpath Used	408
Surface High Speed OptiRough - Rest Material From An Stl File	410
Multi Setup	415
Import And Machine CAD Files	419
Toolpath Used	420
Importing And Machining A Step File	424
OptiRough Toolpath Review	426
High Speed Horizontal Toolpath Review	427

Surface High Speed Raster Review	427
Importing And Machining A SolidWorks File	430
Orientate The Part Using Dynamic Transform	430
Set A New Origin	431
Rough Out And Finishe Part	432
Model Prep & Toolpaths	435
Introduction	436
Use Dynamic Transform To Rotate The Part	439
Modify Solid Feature Command	440
Push/Pull Command	441
Move Command	442
Remove Solid Fillets Command	444
Push/Pull To Change Fillets	444
Rough And Finish The Part	447
3D Skills Test	451
Appendix - Drawings	454

3D Wireframe & Solid Geometry Creation

INTRODUCTION

This lesson will further your knowledge of the geometry creation tools that you will need for creating your own Solid geometry to define toolpaths or for creating supplemental geometry to graphically control the toolpath motions in Mastercam. The main goal of the geometry lessons is to give you the basic understanding of how to create 3D wireframe and solid geometry in Mastercam so that you can practice to become as proficient as your job requires.

While Mastercam offers a large number of geometry creation tools, this workbook focuses on fundamental tools for most shapes. Other geometry tools work in a similar manner to the ones shown in this lesson and can be used as needed for unique constructions. We have selected what we consider to be the most useful tools.

Until now, you have used wireframe geometry to model parts. Wireframe entities work well for relatively simple parts, but they are limited since they contain no information about the faces or interior of the model and cannot be shaded. 3D wireframe models can be difficult to create and change.

OVERVIEW OF EXERCISE:

In this lesson we will continue to become familiar with the Mastercam screen components and learn tools and shortcuts to begin creating basic 3D wireframe and solid geometry shapes. We will also be introduced to some specialty geometry tools that are useful for preparing geometry for toolpaths.

NEW CONCEPTS COVERED IN THIS LESSON:

- ♦ Create 3D Wireframe
- ♦ Create solids using extrude, trim by plane commands.
- ♦ Create Curve One Edge
- ♦ Create Curve All Edges
- ♦ Create Curve At Intersection

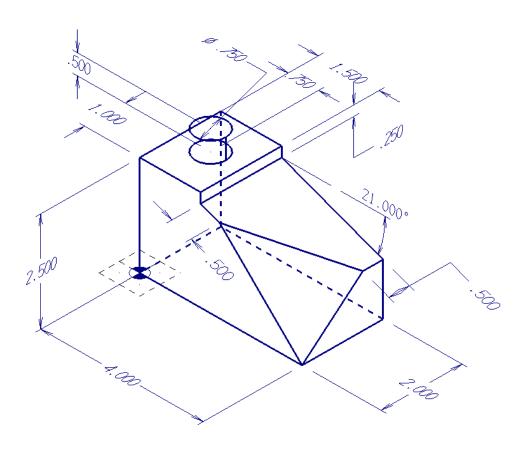
INSTRUCTOR DEMONSTRATION PREVIEW

Note: This entire lesson is a joint Instructor / Student exercise. No instructor demo for this lesson.

Topics:

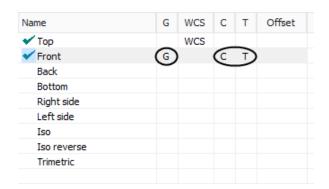
- ♦ Create 3D Wireframe
- **♦** Create Solid Geometry
- **♦** Create Curves

N	n	Т	F۷	•
ıv	U		LJ	•

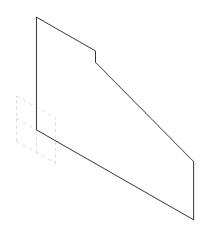


3D WIREFRAME & SOLID GEOMETRY CREATION

Note: In this lesson the students and instructor will work through the topics as a group.

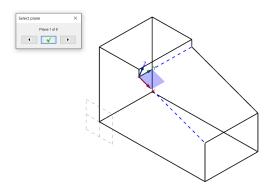

CREATE DRAWING #1 WIREFRAME

Full sized drawings can be found at the back of the book


1. Create The 2D Geometry In The Front Cplane

◆ Set the **Cplane** and the **Gview** to **Front**.

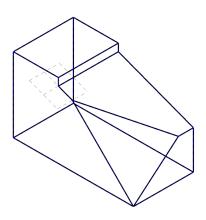
Use the following commands:


- ♦ Wireframe/Rectangle.
- ♦ Wireframe/Line Parallel.
- ♦ Wireframe/Line Endpoints.
- ♦ Wireframe/Trim Break Extend Trim 2 entities.
- ♦ The geometry should look as shown.

2. Create The 3D Geometry Using Translate

Note: When changing the **Gview** to **Isometric**, the **Cplane** changes to **Top** plane due to settings in **Configuration**. Reselect the plane in the **Planes Manager** panel before starting the **Translate** command.

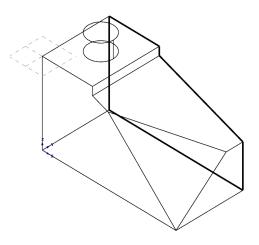
- ♦ Select **Translate** from **Transform** ribbon.
- ◆ Enable the Join option and enter in the delta Z -2.0".
- 3. Define A New Plane
- ◆ In the Planes Manager, click on the drop down arrow next to the Create a new plane icon and select From geometry.
- ◆ Select first the line that you want to be the **X** Axis and then the second line that will defined **Y** Axis.
- ◆ The Z Axis should point outwards, otherwise select the Forward button until all the axes are pointing as shown.
- ◆ Give a name to the new plane and enable **Set as Cplane.** The plane origin will be automatically set at the intersection between the **X** and **Y Axis**.



4. Create The 2D Geometry In The New Cplane

Use the following commands:

- ♦ Wireframe/Line Parallel.
- ♦ Wireframe/Line Endpoint.
- ♦ Wireframe/Trim Break Extend Trim 1 entity.
- ♦ The geometry should look as shown.



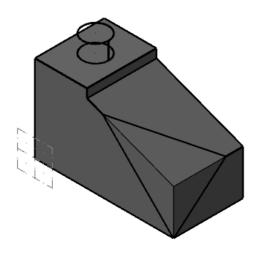
5. Create The Cylinder In The Top Cplane

Note: Make sure that you change the plane to Top Cplane and Z depth to 2.5".

Use the following commands:

- ♦ Wireframe/Circle Center Point.
- ♦ Transform/Translate.
- ♦ The geometry should look as shown.

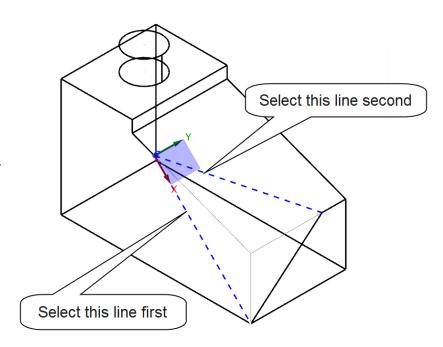
Note: If you do not have the vertical line joining the two circles as shown, in the **Translate** panel ensure that **Join** is enabled as shown.


CREATE DRAWING #1 SOLID

1. Extrude The 2D Geometry In The Front Cplane

Use the following command:

- ♦ Solids/Extrude.
- Make sure that the Front plane is selected as the Cplane.
- ♦ In the **Chaining** dialog box enable **C-plane**.
- ♦ Make sure the **Distance = 2.0**.
- ♦ Reverse direction if needed.

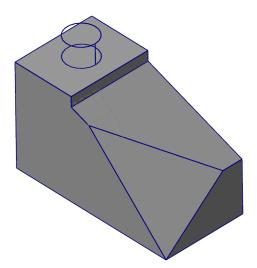


2. Define A New Plane

♦ From the Planes Manager, select From geometry.

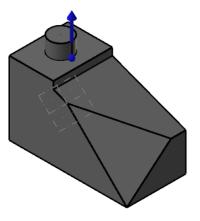
- Select first the line that you want to be the X Axis and then the second line that will defined Y Axis.
- The Z Axis should point outwards, otherwise select the Forward button until all the axis are pointing as shown.

♦ Give a name to the new plane "Plane - Solid Face" and leave the origin at the intersection between the X and Y axes.

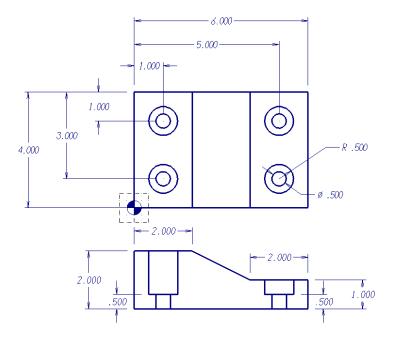

3. Solid Trim By Plane

Use the following command:

- ♦ Solids/Trim by Plane.
- ♦ Select the solid.
- ♦ In the **Plane** area, click on the **Named Plane** icon.

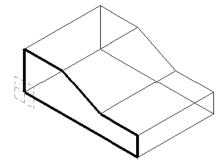


- ♦ Select the "Plane Solid Face".
- Reverse the direction if needed as shown.


4. Solid Extrude Add Boss

- ♦ Solids/Extrude Add boss.
- ♦ Select the bottom circle.
- ♦ Enable Add boss.
- ♦ Set the **Distance** = **0.5**.
- Reverse the direction if needed.
- ♦ The geometry should look as shown.

CREATE DRAWING #2 WIREFRAME


Full sized drawings can be found at the back of the book

1. Create The 2D Geometry In The Front Cplane

Use the following commands:

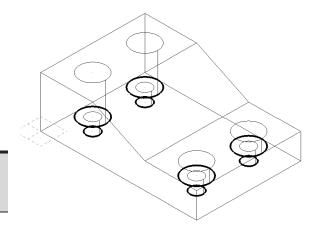
- ♦ Wireframe/Rectangle.
- ♦ Wireframe/Line Parallel.
- ♦ Wireframe/Line Endpoints.
- ♦ Wireframe/Trim Break Extend Trim 2 entities.
- ♦ Delete the construction lines.
- ♦ The geometry should look as shown.

2. Create The 3D Geometry Using Translate

Use the following command:

♦ Transform/Translate

Note: To create the 3D geometry, in the Front Cplane, use Transform Translate with **Join** enabled and delta $\mathbf{Z} = -4.0$.



3. Create The 2D Geometry In The Top Cplane

Use the following commands:

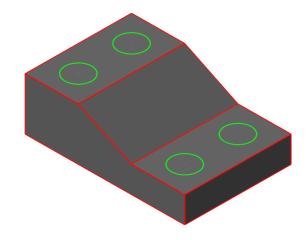
- ♦ Wireframe/Line Parallel.
- ♦ Wireframe/Circle Center Point.
- Delete the construction lines.
- ♦ The geometry should look as shown.

Note: Create the parallel lines to establish the centers of the circles. Change the Z depth to **0.5** and switch to 2D mode before you create the 1.0" diameter circles.

4. Create The Cylinders In The Top Cplane

Use the following command:

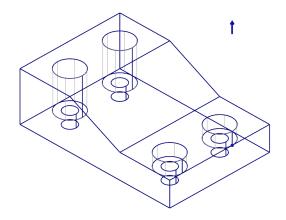
♦ Transform/Translate.


Note: Make sure that the plane is set to the **Top Cplane** and for delta Z give the appropriate values based on the drawing dimensions.

CREATE DRAWING #2 SOLID

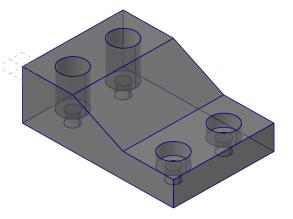
1. Extrude Create Body

- ♦ Solids/Extrude.
- Make sure that the Front plane is selected as the Cplane.
- ♦ In the **Chaining** dialog box enable **C-plane**.
- ♦ Make sure the **Distance** = **4.0**.
- Reverse direction if needed.

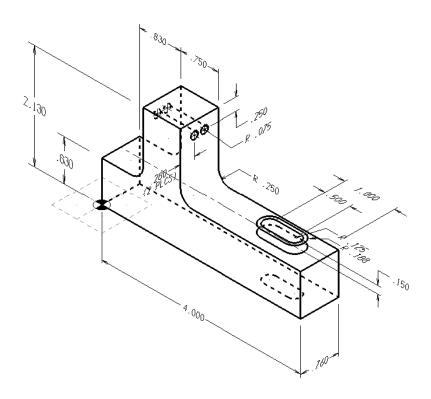


2. Solid Extrude Cut The 1.0" Diameter Holes

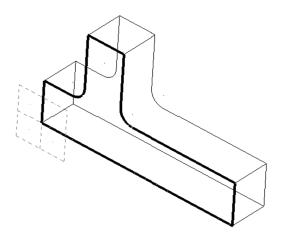
Use the following command:


- ♦ Solids/Extrude Cut body.
- ◆ Unshade the solid and select all the 1" diameter circles at the bottom.
- ♦ Enable Cut body.
- ♦ Enable **Through all** as the Distance.
- Reverse direction if needed (you can click in the graphics window on the chain that was selected).
- ♦ OK and Create New Operation.

- ♦ Select the bottom circles in the same direction.
- ♦ Enable Cut body.
- ♦ Leave the **Distance** set **Through all**.
- Reverse direction if needed.
- ♦ Select the **OK** icon to exit the command.
- ♦ Select the **Translucency Toggle** icon.


3D CPLANE: TOP * TPLANE: TOP * WCS: TOP * () () ()

♦ The geometry should look as shown.


CREATE DRAWING #3 WIREFRAME

Full sized drawings can be found at the back of the book

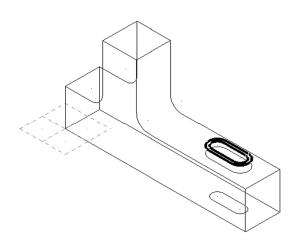
1. Create The 2D Geometry In The Front Cplane

- ♦ Wireframe/Rectangle.
- ♦ Wireframe/Line Parallel.
- ♦ Wireframe/Trim Break Extend Divide/delete.
- ♦ Wireframe/Fillet Entities
- ♦ Wireframe/Trim Break Extend Trim 2 entities.
- ♦ The geometry should look as shown.

2. Create The 3D Geometry Using Translate

Use the following command:

♦ Transform/Translate.

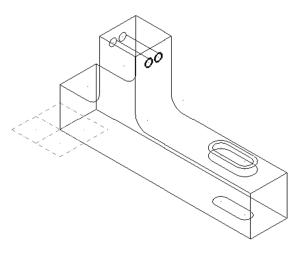

Note: To create the **3D** geometry, use **Transform/Translate** in the **Front Cplane** with **Join** enabled and delta **Z = -0.76**.

3. Create The 2D Geometry In The Top Cplane

Use the following command:

- ♦ Wireframe/Line Parallel.
- ♦ Wireframe/Rectangular Shapes Obround.
- ♦ Home/Delete Entities.
- ♦ Transform/Offset Chains.
- **♦** Transform/Translate
- ♦ The geometry should look as shown.

Note: Create the parallel lines to establish the location of the lower left corner of the rectangle. Change the **Z depth** to **0.83" + 0.15"** before you create the obround. Use the **Transform/Offset Chain** to create the other obround. Use **Transform/Translate** to copy the other obrounds.



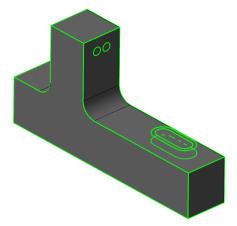
4. Create The 2D Geometry In The Right Cplane

Use the following command:

- ♦ Wireframe/Line Parallel.
- ♦ Wireframe/Circle Center Point.
- **♦** Transform/Translate
- ♦ The geometry should look as shown.

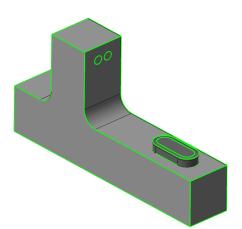
Note: Change the plane and then change the Z-depth by selecting the endpoint of one of the lines from the face. Create the parallel lines for the center location of the circles and then create them. Use **Transform/Translate** to create the cylinders.

CREATE DRAWING #3 SOLID

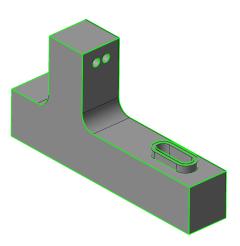

1. Extrude Create Body

Use the following command:

- ♦ Solids/Extrude.
- ♦ Select the **Front** as the **Cplane**.
- ♦ In the **Chaining** dialog box enable **C-plane**.
- ◆ Select the profile from the **Front** plane.
- ♦ Make sure the **Distance** = **0.76**.


- ♦ OK and Create New Operation.

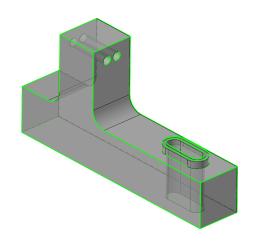
2. Solid Extrude Add Boss


Use the following command:

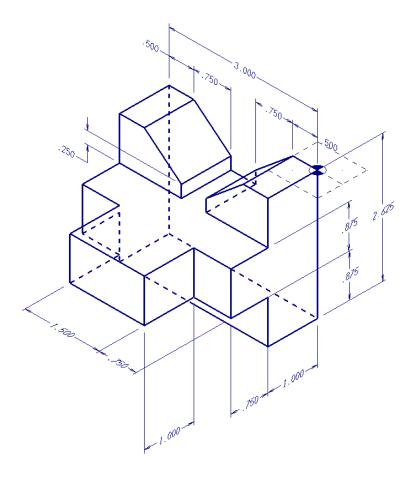
- ♦ Solids/Extrude Add boss.
- ♦ Select the lower outer obround shape.
- ♦ Enable Add boss.
- ♦ Set the to **Distance** = **0.15**.
- Reverse direction if needed.
- ♦ OK and Create New Operation.
- ♦ The geometry should look as shown.

3. Solid Extrude Cut Through The 0.15" Diameter Holes

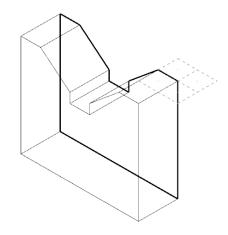
- ♦ Solids/Extrude Cut body.
- ♦ Select the **0.15**" diameter circles.
- Make sure that the **Right** plane is selected as the **Cplane**.
- ♦ Enable Cut body.
- ♦ Set the **Distance** to **Through all**.
- ♦ Reverse direction if needed (you can click in the graphics window on the chain that was selected).
- ♦ OK and Create New Operation.



4. Solid Extrude Cut The Obround Shape


- Select the top inside obround shape.
- ♦ Leave the same settings.
- Reverse the direction if needed (you can click in the graphics window on the chain that was selected).
- ♦ Click on the **Translucency Toggle** icon.

CREATE DRAWING #4 WIREFRAME


Full sized drawings can be found at the back of the book

1. Create The 2D Geometry In The Front Cplane

Use the following command:

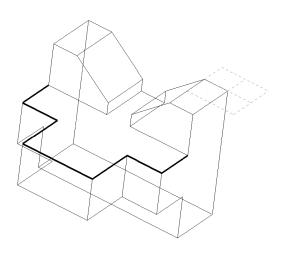
- ♦ Wireframe/Rectangle.
- ♦ Wireframe/Line Parallel.
- ♦ Wireframe/Line Endpoints.
- ♦ Wireframe/Trim Break Extend Divide/delete.
- ♦ Wireframe/Trim Break Extend Trim 3 entities.
- ♦ The geometry should look as shown.

2. Create The 3D Geometry Using Translate

Use the following command:

♦ Transform/Translate.

Note: To create the **3D** geometry, use **Transform/Translate** in the **Front Cplane** with **Join** enabled and delta $\mathbf{Z} = \mathbf{1.0}$.


3. Create The 2D Geometry In The Top Cplane

Use the following command:

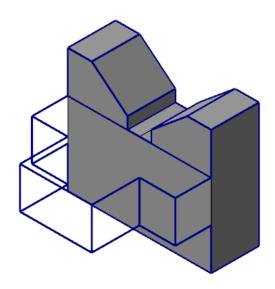
- ♦ Wireframe/Line Endpoints.
- ♦ Wireframe/Line Parallel.
- ♦ Wireframe/Trim Break Extend Divide.
- ♦ Wireframe/Trim Break Extend Trim 2 entities.
- **♦** Transform/Translate
- ♦ The geometry should look as shown.

Note: Change the Cplane to Top and change the Z depth to -0.875. Create a line horizontal and a line vertical and use them to create the rest of the parallel lines.

Use Transform/Translate with Join enabled and delta Z = -0.875. Clean up the geometry using trim.

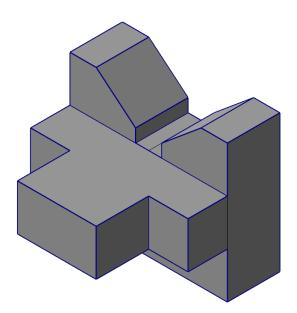
CREATE DRAWING #4 SOLID

Note:Solids require closed chains. Use the **Join** command to join the lines if needed.

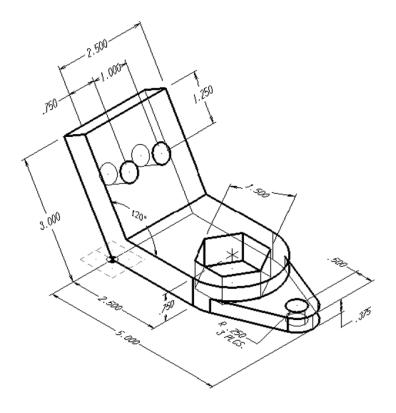

1. Extrude Create Body

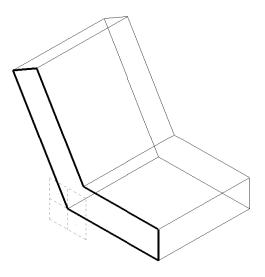
Use the following command:

- ♦ Solids/Extrude.
- ♦ Select the **Front** as the **Cplane**.
- ♦ In the **Chaining** dialog box enable **C-plane**.
- ♦ Select the profile from the **Front** plane.
- ♦ Make sure the **Distance = 1.0**.


♦ OK and Create New Operation.

2. Solid Extrude Add Boss


- ♦ Solids/Extrude Add boss.
- ♦ Select the **Top** plane as the **Cplane**.
- ♦ In the **Chaining** dialog box enable **C-plane**.
- ♦ Select the profile from the **Front** plane.
- ♦ Enable Add boss.
- ♦ Make sure the **Distance** = **0.875**.
- Reverse direction if needed.


CREATE DRAWING #5 WIREFRAME

Full sized drawings can be found at the back of the book

1. Create The 2D Geometry In The Front Cplane

- ♦ Wireframe/Line Endpoints.
- ♦ Wireframe/Line Parallel.
- ♦ Wireframe/Trim Break Extend Trim 2 entities.
- ♦ The geometry should look as shown.

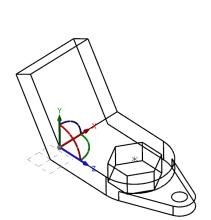
2. Create The 3D Geometry Using Translate

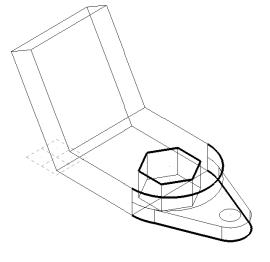
Use the following command:

♦ Transform/Translate.

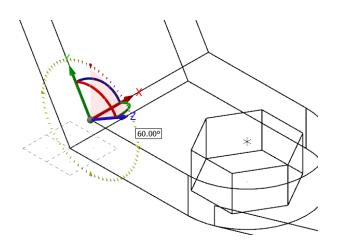
Note: To create the **3D** geometry, use **Transform/Translate** in the **Front Cplane** with **Join** enabled and delta $\mathbf{Z} = -2.5$.

3. Create The 2D Geometry In The Top Cplane

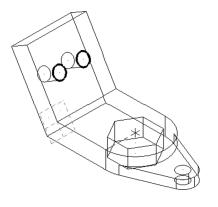

Use the following command:


- **♦** Wireframe/Arc Endpoints.
- ♦ Wireframe/Line Parallel.
- ♦ Wireframe/Trim Break Extend Trim 1 entities.
- ♦ Wireframe/Circle Center Point.
- **♦** Delete entities.
- ♦ Wireframe/Line Endpoints Tangent.
- ♦ Wireframe/Trim Break Extend Divide.
- ♦ Wireframe/Trim Break Extend Trim 2 entities.
- **♦** Transform/Translate
- ♦ Wireframe/Arc Endpoints.
- **♦** Transform/Translate.
- ♦ Wireframe/Polygon.
- ♦ Transform/Translate.
- ♦ The geometry should look as shown.

Note: Change the **Cplane** to **Top** and create the **2D** geometry at the appropriate depths as shown. Use **Transform/Translate** with **Join** and **delta Z** based on the drawing.


4. Define A New Plane

- ◆ From the Planes Manager, click on the Create new plane icon and select Dynamic.
- ♦ Pick the new origin as shown.



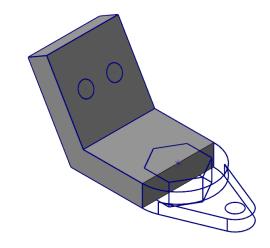
- ◆ Pick the **Y** axis and rotate it as shown in the figure to the right.
- Give a name to the new plane and make sure Set as Cplane is enabled.
- ♦ Exit the **New Plane** dialog box.

- ♦ Change the **Z depth** to **0.0**.
- 5. Create The 2D Geometry In The New Cplane

- ♦ Wireframe/Line Parallel.
- ♦ Wireframe/Circle Center Point.
- ♦ The geometry should look as shown.

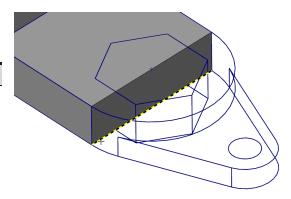
CREATE DRAWING #5 SOLID

1. Extrude Create Body


Use the following command:

- ♦ Solids/Extrude.
- ♦ Select the **Front** as the **Cplane**.
- ♦ In the **Chaining** dialog box enable **C-plane**.
- ◆ Select the profile from the **Front** plane.
- ♦ Make sure the **Distance = 2.5**.

♦ Select the **OK** button.

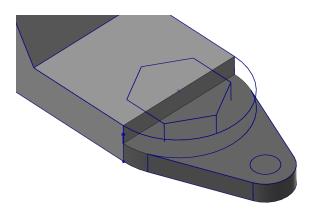


2. Create A Line To Close The Profile

Note: Solids require closed chains.

Use the following command:

♦ Wireframe/Line Endpoints.



3. Solid Extrude Add Boss

- ♦ Solids/Extrude Add boss.
- ◆ Select the **Top** plane as the **Cplane**.
- ♦ In the **Chaining** dialog box enable **C-plane**.
- ◆ Select the profile from the **Top** plane.
- ♦ Enable Add boss.
- ♦ Make sure the **Distance = 0.375**.

- ♦ Reverse direction if needed.
- ♦ Select the **OK** button.

www.eMastercam.com

Sitewide Subscription

An eMastercam sitewide subscription will grant you instant access to all of our online resources, including our full library of eBooks and eCourses. Once subscribed, you will be able to watch all of our streaming eCourses in your browser or read any of our Mastercam eBooks using our Webviewer.

www.eMastercam.com/sitewide-subscription

Decades of experience. Thousands of post processors.

Choose In-House Solutions for all your post needs.

Implementing successful post processors for decades, the post department at In-House Solutions has earned a reputation for quality, resulting in one of the largest post departments in the world. We have an extensive library built using our new post engine, "IKE". We are continually developing and expanding our product to include new machines and controllers everyday, and if a post is not already available, we will develop a custom one for nearly any machine. We have great relationships with OEMs who provide technical information for both machines and controls, which in turn allows us to produce post processors that will generate edit-free code and run your machine efficiently.

Be sure to ask your Mastercam reseller for an In-House Solutions IKE post!

www.inhousesolutions.com/posts

Included with each eCourse: HLE demo software, corresponding PDF eBook, and personalized final certificate.

In-House

Mastercam.com

LOGIN & LEARING

Expand your Mastercam knowledge, anytime and at your own pace, with our selection of step-by-step online video eCourses.

Mastercam eCourses provide both novice and seasoned Mastercam users with the tools and information they need to excel.

The "log in & learn" format of each eCourse allows users to set up their own online classroom, where each user's experience is customized and tracked. Because the eCourses are not subscription-based and have no expiration date, users can log on and off at any time, and finish the program at their convenience without additional expense.


Approximate completion time ranges from 7.5 to 15 hours depending on the eCourse, making it possible for employees or students to gain new skills outside of work or studies.

Highlights:

 Online previews with table of contents including the time it takes to complete each session.

Mastercam. @Course

- Mastercam 2020 Home Learning Edition Demo Software download is included so you can follow along with our instructors.
- Corresponding eBook is provided.
- Quizzes follow each tutorial.
- Personalized certificate of completion for each successfully completed eCourse.
- Instant, lifetime access

OCTOPU2°

Robot Programming & Simulation Software

Program and generate robot code in a simple and easy way, regardless of application and brand. Spend less time programming and more time manufacturing!

Why choose OCTOPUZ?

Multiple robots? No problem!
Most robot brands supported
Simple simulation building
Extensive component library

Automatic toolpath solving
Application versatility
CAM interface
Complex kinematic systems

www.OCTOPUZ.com

e//astercam

TELL US WHAT YOU THINK

Our goal is to provide you the best Mastercam Training Solutions, and we do that with your help.

Tell us what you like about our training solutions. Let us know what you think can be improved. Give us suggestions for future products.

www.eMastercam.com/feedback

We appreciate your feedback!

DIDYOU LIKETIIS BOOKS

Training Tutorials Instructor Materials

Handbooks
Professional Courseware

Pro. Certification Curriculum

Online Video eCourses

Site Licenses

Sitewide Subscription

Online Community

Discover other Mastercam Training Solutions at www.eMastercam.com