Nastercam 2022

Beginners Training Tutorial

To order more books:

Call 1-800-529-5517 or

Visit www.emastercam.com or

Contact your Mastercam dealer

Mastercam 2022 Beginners Tutorial

Copyright: 1998 - 2022 In-House Solutions Inc. All rights reserved

Software: Mastercam 2022

Authors: Mariana Lendel

ISBN: 978-1-77146-949-4

Date: July 30, 2021

Notice

In-House Solutions Inc. reserves the right to make improvements to this manual at any time and without notice.

Disclaimer Of All Warranties And Liability

In-House Solutions Inc. makes no warranties, either express or implied, with respect to this manual or with respect to the software described in this manual, its quality, performance, merchantability, or fitness for any particular purpose. In-House Solutions Inc. manual is sold or licensed "as is." The entire risk as to its quality and performance is with the buyer. Should the manual prove defective following its purchase, the buyer (and not In-House Solutions Inc., its distributor, or its retailer) assumes the entire cost of all necessary servicing, repair, of correction and any incidental or consequential damages. In no event will In-House Solutions Inc. be liable for direct, indirect, or consequential damages resulting from any defect in the manual, even if In-House Solutions Inc. has been advised of the possibility of such damages. Some jurisdictions do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you.

Copyrights

This manual is protected under International copyright laws. All rights are reserved. This document may not, in whole or part, be copied, photographed, reproduced, translated or reduced to any electronic medium or machine readable form without prior consent, in writing, from In-House Solutions Inc.

Trademarks

Mastercam is a registered trademark of CNC Software, Inc.

Microsoft, the Microsoft logo, are registered trademarks of Microsoft Corporation;

Windows 10 is a registered trademarks of Microsoft Corporation.

Table Of Contents

Beginners Training Tutorial	1
Mill Essentials Training Tutorials	21
Getting Started	23
Objectives	24
Step 1: Starting Mastercam	24
Step 2: GUI - Graphical User Interface	25
Step 3: Navigate Through Mastercam	26
Step 4: Setting the attributes	28
Step 5: About Manager Panels	30
Step 6: Setting Mastercam to Imperial	32
Step 7: Setting the Grid	34
Conventions used in this book:	35
Mastercam® Workflow	36
Tutorial 1: Geometry Creation	39
Tutorial #1 Drawing	41
Step 1: Setting Up The Graphical User Interface	42
Step 2: Create One Rectangle	43
Step 3: Create The 1/4" Diameter circles	45
Step 4: Create The 3/4" & 2.0" Diameter Circles	48
Step 5: Create The Chamfers	51
Step 6: Save The File	53
Tutorial #1 Review Exercise	54
Create The Geometry For Tutorial #1 Exercise	55
Tutorial 1: Toolpath Creation	57
Suggested Fixture	59
Setup Sheet	60
Step 1: Select The Machine And Set Up The Stock	61
Step 2: Face The Part	64
Step 3: Circle Mill The Large hole	71

	Step 4: Backplot The Toolpaths	77
	Step 5: Simulate the toolpath in Verify	79
	Step 6: Circle Mill The Inside hole	80
	Step 7: spot drill the 0.25" holes	87
	Step 8: Drill The 0.25" holes	94
	Step 9: Chamfer The Large hole	99
	Step 10: Machine the Corners using Contour toolpath	. 106
	Step 11: Post The File	.113
	Step 12: Save The Updated MCAM File	.114
	Create The Toolpaths For Tutorial #1 Exercise	.115
T	utorial 2: Geometry Creation	.117
	Tutorial #2 Drawing	.119
	Step 1: Setting Up The Graphical User Interface	.120
	Step 2: Create A Rectangle	. 121
	Step 3: Create Two Obround Shapes	. 123
	Step 4: Create A Circle	.126
	Step 5: Use Divide To Clean The Circle	.127
	Step 6: Create Parallel Lines	.129
	Step 7: use divide delete to clean up the geometry	.132
	Step 8: create angular lines	.134
	Step 9: Create A polygon	137
	Step 10: create fillets	.139
	Step 11: Rotate the Part	.144
	Step 12: Create the Solid	146
	Step 13: Create the stock using bounding box	. 149
	Step 14: Save The File	151
	Tutorial #2 Review Exercise	.152
	Create The Geometry For Tutorial #2 Exercise	.153
T	utorial 2: Toolpath Creation	155
	Toolpath Creation - Setup #1	.157

	Suggested Fixture	. 157
	Setup Sheet	.157
	Step 1: Open the Vise and Merge the part	.158
	Step 2: Set the part Origin	. 164
	Step 3: Use Levels Manager to make the vise invisible	.165
	Step 4: Select The Machine And Set Up The Stock	. 166
	Step 5: Slot Milling	. 169
	Step 6: Backplot The Toolpaths	. 177
	Step 7: Simulate the toolpath in Verify	178
	Step 8: Machine the Cutout pockets	.180
	Step 9: Finish the Inside shapes - Dynamic contour	. 188
	Step 10: Rough the outside using High Speed Dynamic Mill	.195
	Step 11: Finish the Outside profile using contour toolpath	.202
	Step 12: Create a Stock Model	. 206
	Toolpath Creation - Setup 2	.209
	setup Sheet:	.209
	Step 13: Creating And Renaming Toolpath Groups	.210
	Step 14: Create and Set WCS To bottom	.212
	Step 15: Merge the soft jaw vise	.216
	Step 16: Use Translate to Align the soft jaw vise To The Part	.219
	Step 17: Make The Vise Invisible	.222
	Step 18: Face The Part	. 223
	Step 19: Rename The NC File	.229
	Step 20: Post The File	.230
	Step 21: Save The Updated MCAM File	.232
	Create The Toolpaths For Tutorial #2 Exercise	. 233
T	utorial 3: Geometry Creation	.241
	Tutorial #3 Drawing	.243
	Step 1: Setting Up The Graphical User Interface	.244
	Step 2: Create Two Arcs	244

	Step 3: Create A Vertical Line	.253
	Step 4: Create arc using Arc Polar Endpoints	.255
	Step 5: Rotate The Geometry	.257
	Step 6: Mirror Geometry	.259
	Step 7: Create Tangent Arcs	.261
	Step 8: Trim geometry	.263
	Step 9: Break and delete the small circle at quadrant point	. 265
	Step 10: Mirror Geometry to complete arms	.268
	Step 11: Join the half arcs	.270
	Step 12: Create A Construction Line	.271
	Step 13: Create a 0.5" Diameter Circle	.272
	Step 14: Delete Construction Geometry	. 274
	Step 15: Create Tangent Lines	. 275
	Step 16: Create an Arc Polar	.278
	Step 17: Create Fillets	.280
	Step 18: Trim the arc	.282
	Step 19: Rotate	. 283
	Step 20: Translate	.285
	Step 21: Change The Main Level To 2	.289
	Step 22: Create The Solid Body By Extruding A Closed Chain	.289
	Step 23: Extrude Cut The Pockets and the Holes	. 297
	Step 24: Chamfer The Part	.304
	Step 25: Save The File	. 308
	Tutorial #3 Review Exercise	.309
	Create The Geometry For Tutorial #3 Exercise	.310
	Create The Solid Geometry For Tutorial #3 Exercise	.310
T	utorial 3: Toolpath Creation	313
	Suggested Fixture	.315
	Step 1: Select The Machine And Set Up The Stock	.317
	Step 2: 2D High Speed Dynamic Mill	. 320

Step 3: Backplot The Toolpaths	328
Step 4: Simulate the toolpath in Verify	330
Step 5: Finish the walls using Contour toolpath	331
Step 6: Area Mill Toolpath	336
Step 7: Transform-Rotate Toolpath	344
Step 8: Finish the pocket walls using Contour toolpath	347
Step 9: Chamfer Drill to Spot Drill The Holes	352
Step 10: Drill all Holes	356
Step 11: Chamfer The Outside Diameter	360
Step 12: Chamfer The Pockets	365
Setup Sheet 2:	371
Step 13: Creating And Renaming Toolpath Groups	372
Step 14: set The WCS To Bottom	373
Step 15: 2D HS Dynamic Mill	376
Step 16: Finish the Pocket wall using Contour toolpath	383
Step 17: Rename The NC File	
Step 18: Post The File	389
Step 19: Save The Updated MCAM File	390
Create The Toolpaths For Tutorial #3 Exercise	391
Tutorial 4: Geometry Import	397
Step 1: Setting Up The Graphical User Interface	398
Step 2: Importing the Solidworks File geometry	398
Step 3: Save The File	400
Tutorial #4 Review Exercise	401
Tutorial 4: Toolpath Creation	405
Suggested Fixture	407
Setup Sheet 1	408
Step 1: Select The Machine And Set Up The Stock	409
Step 2: 2D High Speed Area Mill	411
Step 3: Backplot The Toolpaths	417

	Step 4: Simulate the toolpath in Verify	.418
	Step 5: 2D High Speed Area Mill	418
	Step 6: Remachine the remaining material using Area mill	. 428
	Step 7: Drill all Holes	.435
	Step 8: Chamfer Drill The Holes	.440
	Step 9: Tap The Holes	.443
	Suggested Fixture 2:	.448
	Setup Sheet 2:	.449
	Step 10: Creating And Renaming Toolpath Groups	450
	Step 11: set WCS To Front	.451
	Step 12: Chamfer Drill The Holes	454
	Step 13: Drill The Two 3/8" Tap Holes	.458
	Step 14: Tap The Two Holes	.461
	Step 15: Drill The 5/8 -11 Tap Hole	.465
	Step 16: Create a 1/4" Thread Mill	.468
	Step 17: Set the Thread Mill Cut Parameters	472
	Step 18: Rename The NC File	.475
	Setup Sheet 3:	. 476
	Step 19: Creating And Renaming Toolpath Groups	477
	Step 20: set The WCS To Left Side	.478
	Step 21: Machine The Slot	.479
	Step 22: Rename The NC File	.484
	Step 23: Post The File	. 485
	Step 24: Save The Updated MCAM File	. 486
	Create The Toolpaths For Tutorial #4 Exercise	.487
L	athe Training Tutorials	.501
(Getting Started	503
	Objectives	.504
	Step 1: Starting Mastercam	.504
	Step 2: GUI - Graphical User Interface	. 505

St	tep 3: Navigate Through Mastercam	506
St	tep 4: Set the attributes	.508
St	tep 5: Manager Panels	509
St	tep 6: Setting mastercam to imperial	.511
St	tep 7: Set the Grid	513
C	onventions used in this book:	514
St	tep 8: Step titles	.514
M	astercam® Work Flow	515
Tuto	orial 1: Geometry Creation	517
O	verview Of Steps Taken To Create The Part Geometry	518
Τι	utorial #1 Drawing	519
St	tep 1: Setting Up The Graphical User Interface	.520
St	tep 2: Create A Rectangle	521
St	tep 3: Create the Parallel Lines	524
St	tep 4: Create Line endpoint	.530
St	tep 5: Create the fillets	.531
St	tep 6: Trim The Geometry	533
St	tep 7: save the file	535
Τι	utorial #1 Review Exercise	536
С	reate The Geometry For Tutorial #1 Exercise	537
Τι	utorial #1 Geometry Creation Quiz	539
Tuto	orial 1: Toolpath Creation	541
O	verview Of Steps Taken To Create The Final Part:	.542
Pa	art Setup:	543
St	tep 1: Select The Machine And Set Up The Stock	544
St	tep 2: face the part	549
St	tep 3: Backplot The Toolpath	.551
St	tep 4: Simulate The Toolpath in Verify	.552
St	tep 5: Rough Out The Part	.554
St	tep 6: Finish The Part	560

Step 7: Post The File	564
Step 8: Save The Updated MCAM File	565
Create The Toolpaths For Tutorial #1 Exercise	566
Tutorial #1 toolpath creation Quiz	568
Tutorial 2: Geometry Creation	569
Overview Of Steps Taken To Create The Part Geometry	570
Tutorial #2 Drawing	571
Step 1: Setting Up The Graphical User Interface	572
Step 2: Select the lathe Default	572
Step 3: Set up the Lathe Plane +D +Z	572
Step 4: Create A Rectangle	573
Step 5: Create Parallel Lines	575
Step 6: Create the fillets	579
Step 7: Trim The Geometry	582
Step 8: Create Additional Lines	583
Step 9: Trim The Geometry	587
Step 10: Save The File	589
Tutorial #2 Review Exercise	590
Tutorial #2 Geometry Creation Quiz	593
Tutorial 2: Toolpath Creation	595
Overview Of Steps Taken To Create The Final Part:	596
Part Setup:	597
Step 1: Select the Tool Settings And Set Up The Stock	598
Step 2: Face The Part	603
Step 3: Backplot the toolpath	605
Step 4: Simulate the toolpath in Verify	606
Step 5: Rough The Part	607
Step 6: Finish The Part	612
Step 7: Groove The Part Using The multiple chains method	616
Step 8: Center Drill The Part	624

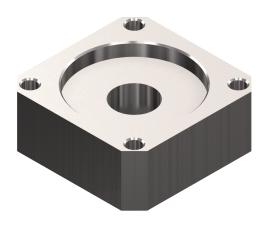
Step 9: Drill The Part	626
Step 10: Run The Post Processor To Obtain The G-code File	630
Step 11: Save The Updated MCAM File	631
Create The Toolpaths For Tutorial #2 Exercise	633
Tutorial #2 toolpath creation Quiz	636
Solids Training Tutorials	637
Tutorial 1	639
Overview Of Steps Taken To Create The Part Geometry	640
Tutorial #1 Drawing	641
Step 1: Setting Up The Graphical User Interface	642
Step 2: Set The Construction Plane And Wireframe Attributes	643
Step 3: Create Rectangles Given the Size and Anchor point	644
Step 4: Create the Parallel Lines	646
Step 5: Trim The Geometry Using Divide	649
Step 6: Chamfer The Inside Rectangle	652
Step 7: Save The File	654
Step 8: Change the Solid Color to red	655
Step 9: Change The Main Level To 2	655
Step 10: Create The Solid Body	655
Step 11: Create Two Holes	659
Step 12: Using Solids Manager to modify the holes	663
Step 13: add a boss	666
Step 14: Chamfer the top Of The boss	668
Step 15: Save The File	670
Tutorial #1 Review Exercise	671
Create The Geometry For Tutorial #1 Exercise	672
Tutorial 2	677
Overview Of Steps Taken To Create The Part Geometry	678
Tutorial #2 Drawing	679
Step 1: Set The Construction Plane And Change Wireframe Color	680

	Step 2: Create Rectangles Given the Size and Anchor point	.682
	Step 3: Create the Parallel Lines	. 684
	Step 4: Create Tangent Arcs	.689
	Step 5: Create Lines knowing the Endpoints	.692
	Step 6: Clean Up The Geometry	.694
	Step 7: Translate Geometry	. 696
	Step 8: Clean the Geometry using divide	.698
	Step 9: Fillet the part	.700
	Step 10: Create The Circles In The Top Plane	.706
	Step 11: Save The File	. 709
	Step 12: Change the Solid Color to red	.710
	Step 13: Change The Main Level To 2	.710
	Step 14: Create The Solid Body By Revolving A Closed Chain	.710
	Step 15: Extrude Cut The 0.25" Circle	.712
	Step 16: Extrude Cut The 1.0" Hole	.716
	Step 17: Extrude Cut The 1.25" Hole	.719
	Step 18: Save The File	. 720
	Tutorial #2 Review Exercise	.721
	Create The Geometry For Tutorial #2 Exercise	.722
C	Quiz Answers	725
	Mill Essentials Tutorial Quiz Answers	.726
	Lathe Tutorial Quiz Answers	. 729
	Solids Quiz Answers	.731

Beginners Projects

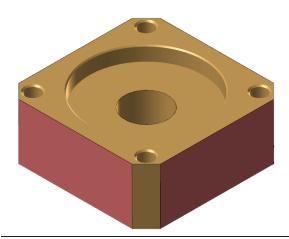
Mill Tutorials

Workspace

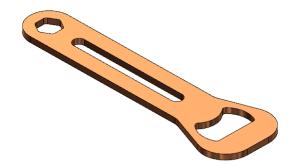

Topics Covered

Workspace: Getting Started

- Starting Mastercam
- Graphical User Interface (GUI)
- Navigate through Mastercam
- Setting the Attributes
- Manager Panels
- Setting Mastercam Unit
- Setting the Grid


Tutorial #1

Topics Covered


Tutorial #1: Geometry Creation

- Create Rectangle
- Create Circles
- Chamfer Entities

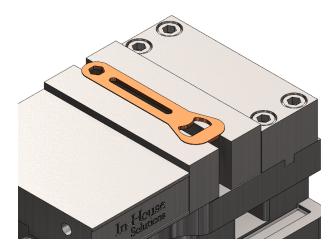
Tutorial #1: Toolpath Creation

- Facing Toolpath.
- Circle Mill Toolpath.
- Contour Toolpath.
- Spot Drill Toolpath.
- Drill Toolpath.
- 2D Contour (Chamfer Toolpath)

Topics Covered

Tutorial #2: Geometry Creation

- Rectangular Shapes.
- Polygon.
- Fillet Entities.
- Fillet Chains.
- Line Endpoints.
- Trim Divide.
- Bounding Box.
- Solid Extrude


Tutorial #2: Toolpath Creation

Setup 1

- Open Vise and Merge the Part.
- Introduction to Levels.
- Slot Mill Toolpath.
- Pocket Toolpath
- 2D HS Dynamic Contour Toolpath.
- 2D HS Dynamic Mill Toolpath.
- Contour Toolpath.

Setup 2

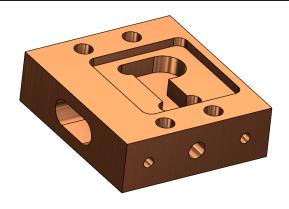
- Toolpath Groups
- Create and set a new WCS
- Merge Soft Jaw Vise
- Align the Soft Jaw Vise to the Part
- Facing Toolpaths.
- Create a Stock Model

Topics Covered

Tutorial #3: Geometry Creation

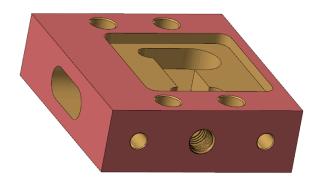
- Circle Center Point
- Line Vertical
- Arc Polar Endpoints
- Rotate
- Mirror
- Arc Tangent
- Trim
- Break two Pieces
- Fillets
- Translate
- Solids Extrude
- Solid Chamfer

Tutorial #3: Toolpath Creation


Setup 1

- 2D High Speed Area Mill Toolpath
- 2D HS Dynamic Mill Toolpath
- Transform Toolpath
- Drill Toolpath
- Contour (Chamfer Toolpath)

Setup 2


- 2D HS Dynamic Mill Toolpath
- Contour Toolpath

Topics Covered

Tutorial #4: Geometry Creation

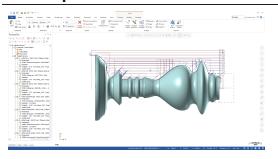
- Import a SolidWorks file
- Translate 3D

Tutorial #4: Toolpath Creation

Setup 1 - Top Plane

- 2D HS Area Mill Toolpath
- 2D HS Area Mill Rest Toolpath
- Drill Toolpaths
- Chamfer Drill Toolpath

Setup 2 - Front Plane


- Chamfer Drill Toolpath
- Drill Toolpath
- Thread Mill Toolpath

Setup 3 - Left Plane

Slot Mill

Lathe

Workspace

Topics Covered

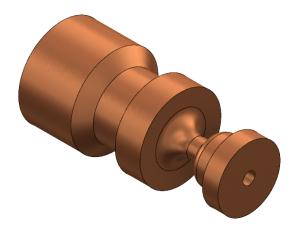
Workspace: Getting Started

- Starting Mastercam
- Graphical User Interface (GUI)
- Navigate through Mastercam
- Setting the Attributes
- Manager Panels
- Setting Mastercam Unit
- Setting the Grid

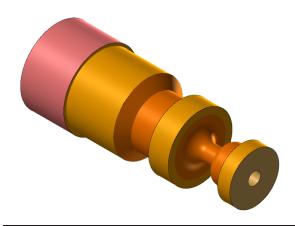
Tutorial #1

Topics Covered

Tutorial #1: Geometry Creation


- Rectangle
- Line Parallel
- Line Endpoints
- Fillet Entities
- Trim Entities
- Divide

Tutorial #1: Toolpath Creation


- Face Toolpath.
- Roughing Toolpath.
- Finish Toolpath.

Topics Covered

Tutorial #2: Geometry Creation

- Setup Lathe Plane (+D+Z).
- Rectangle.
- Line Parallel.
- Fillet Entities.
- Trim to Entities.
- Line Endpoints.

Tutorial #2: Toolpath Creation

- Face Toolpath.
- Roughing Toolpath.
- Finish Toolpath.
- Groove Multiple Chain Toolpath.
- Drilling Toolpath.

Solids

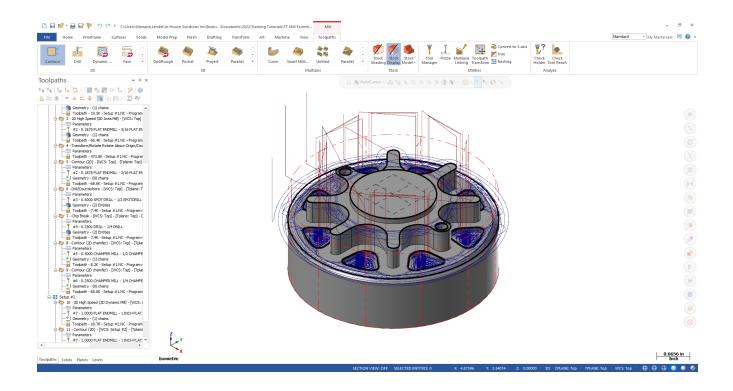
Tutorial #1

Topics Covered

Tutorial #1: Geometry Creation

- Create Rectangle.
- Chamfer Outside Profile.
- Solid Extrude Create Body.
- Solid Extrude Add Boss.
- Solid Hole.
- Constant Radius Fillet.
- One Distance Chamfer.

Tutorial #2


Topics Covered

Tutorial #2: Geometry Creation

- Create Geometry in Front Plane.
- Create Rectangle.
- Create Parallel Lines.
- Create Tangent Arcs.
- Create Lines.
- Translate Geometry.
- Create Fillets.
- Solid Revolve Create Body.
- Solid Extrude Cut Body.

Mill Essentials Training Tutorials

Getting Started

Getting Started Objectives

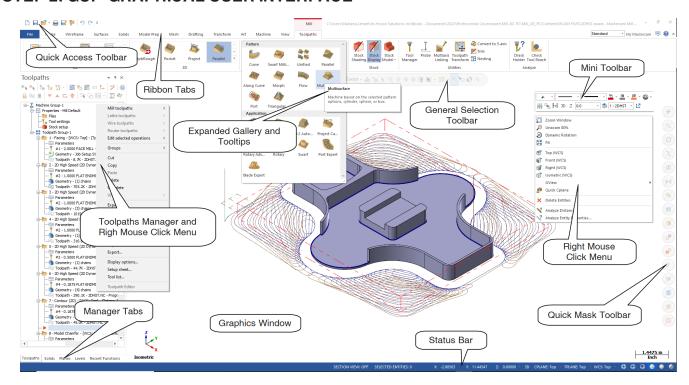
OBJECTIVES

- Starting Mastercam
- The student will learn about the Graphical User Interface.
- The student will learn how to navigate through Mastercam.
- Setting the System Configuration to Imperial.
- Setting the Grid.
- Conventions used in the book.
- Mastercam Workflow.

STEP 1: STARTING MASTERCAM

- 1.1 For Windows 7
 - Select the Start button.
 - Select All Programs and click on Mastercam 2022.

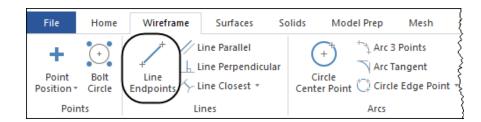
1.2 For Windows 8


- Select the Start button.
- Click on the drop down arrow to open Apps.
- Find and click on Mastercam 2022.

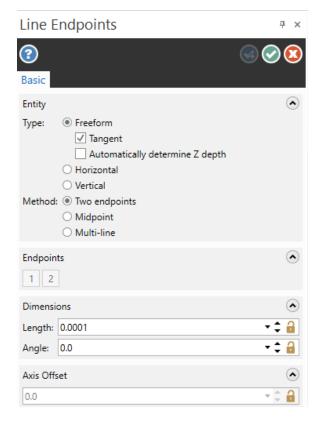
1.3 For Windows 10

- Select the **Start** button.
- Click on the drop down arrow to open Apps.
- Find and click on Mastercam 2022.
- To start the software, from Desktop, click on the shortcut icon as shown.

STEP 2: GUI - GRAPHICAL USER INTERFACE


Quick Access Toolbar	QAT contains a fully customizable set of functions that can be quickly accessed by the user.
Backstage (File)	Allows you to manage files. You can insert information about files, start a new file, open an existing one or merge files together. You can also save, convert or print files as well as access the help resources.
Tabs	Contains all the functionality within Mastercam.
Ribbon	Displays the commands available for a selected Tab.
Selection Bar	Allows you to set the AutoCursor modes and to switch between wireframe or solid selections.
Quick Mask Buttons	Lets you select all entities of a specific type. Clicking on the left side of the button or right side of the button toggles between select all or only.
Right Click Menu	Right click menu allows quick access to functions such as zoom, graphic views or recent functions used. A mini toolbar will also appear that allows you to quickly change the attributes.
Toolpaths/Solids/Planes Manager	Lists the history of the toolpath operations and solids.
Graphics Window	Workspace area in Mastercam where the geometry is displayed.
Scale	Shows you a scale of the object on the screen.
WCS: TOP T/Cplane:	Displays the current WCS and T/Cplane information.

STEP 3: NAVIGATE THROUGH MASTERCAM


In this step, you will learn how to use the menu functions in Mastercam to create geometry.

Start Line Endpoints command

- Select the Wireframe tab (left click).
- Left click on the LineEndpoints icon as shown.

Once you select Line Endpoints, the Line
 Endpoints panel appears on the screen as shown.

Function Prompt

Prompts the user to execute a command.

Sketching a line

■ To sketch a line, left click on two locations on the screen between which the line will be generated.

Creating a line knowing the endpoint coordinates

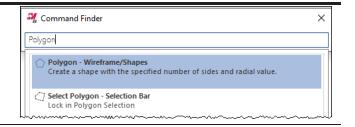
 To make a line knowing the two endpoint coordinates, select the AutoCursor Fast Point icon from the General Selection toolbar.

- In the coordinates field that opens in the upper left corner enter the coordinates of the first endpoint as shown.
- Press Enter to continue.

Note: Enter the X value then the Y value and if needed the Z value separated by comma (,).

Select the AutoCursor Fast Point icon again and enter in the coordinates of the second endpoint and then press Enter.

Note: You do not need click on the **AutoCursor Fast Point** icon. Once Mastercam promp you to enteran endpoint, you can just start typing the values.


Creating a line knowing an endpoint, the length, and the angle

- You can also enter the coordinates of the first endpoint, then enter the **Length** and **Angle** if necessary.
- To continue making lines, choose the **OK and Create New Operation** button from the dialog box or press **Enter**.
- To exit the current command, select the **OK** button or press the **Esc** button.
- To undo the last command, from the QAT (Quick Access Toolbar) select the Undo button. The Undo button can be used to go back to the beginning of geometry creation or to the last point of the saved file. Mastercam also has a Redo button for your convenience.

Example: this prompt is used in the Line Endpoints command. Specify the first endpoint

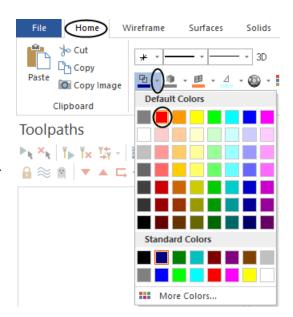
Note: To find a command, from the **Home** ribbon, select the **Command Finder** icon and type the function name in the field that opens up.

For example, to find the **Polygon** command, type "polygon" in the text field. From the list, select the desired command.

STEP 4: SETTING THE ATTRIBUTES

Mastercam attributes are point style, line style, line thickness, color and levels. Before starting to create geometry, you should set the attributes.

4.1 Attributes Group

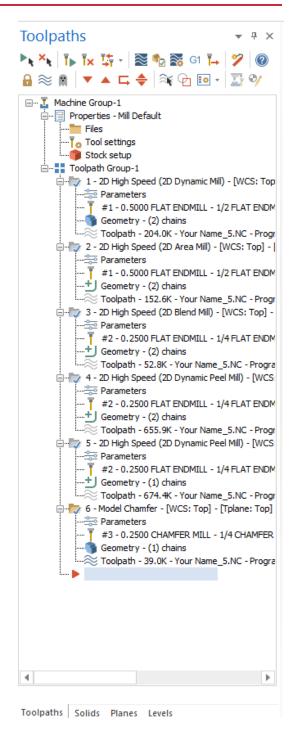

Point Style	Displays and sets the system's point style.
Line Style	Displays and sets the system's line style.
Line Width	Displays and sets the current system's line width.
Color	Assigns the current color to wireframe, solid and surface entities. To change the current color, click in the specific color field and select a color from the color palette. To change an existing geometry color, select the geometry first and then click in the color field and select a color from the color palette.
Clear Color	When performing a transform function (Transform), Mastercam creates a temporary group from the originals (red) and a result (purple) from the transformed entities. These system groups appear in the Groups dialog box. However, they stay in effect only until you use the Clear Colors function or perform another transform function.
2D / 3D Construction Mode	Toggles between 2D and 3D construction modes. In 2D mode, all geometry is created parallel to the current Cplane at the current system Z depth. In 3D mode, you can work freely in various Z depths, unconstrained by the current system Z depth and Cplane setting.

4.2 Organize Group

Z Depth	Sets the current construction depth. To set this, click the drop down arrow and pick one from the most recently used list or click the Z: label and pick a point in the graphics window to use the Z depth values based on the selected entity.
Level	Sets the main level you want to work with in the graphics window. To change the current working level. Type the level number in the box.

Set the Wireframe Color

- In the **Home** tab, **Attributes** group, click on the drop down arrow next to the **Wireframe Color** field as shown.
- Select the desired color from the dialog box as shown.

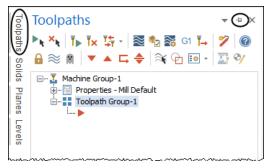

Note: Any geometry on your screen will remain in the previous system color. This change will only affect the geometry you create going forward.

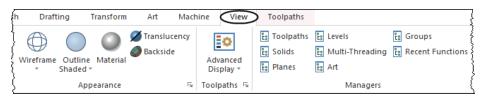
To change the color of existing geometry, select the entities first and then click on the drop down arrow next to the Wireframe Color and select the desired color. The same method can be applied for any other attribute that you want to set or change.

STEP 5: ABOUT MANAGER PANELS

5.1 The Toolpaths Manager

The **Toolpaths Manager** displays all the operations for the current part. You can sort, edit, regenerate, verify and post any operation as shown. For more information on the **Toolpaths Manager**, please click on the **Help** icon.

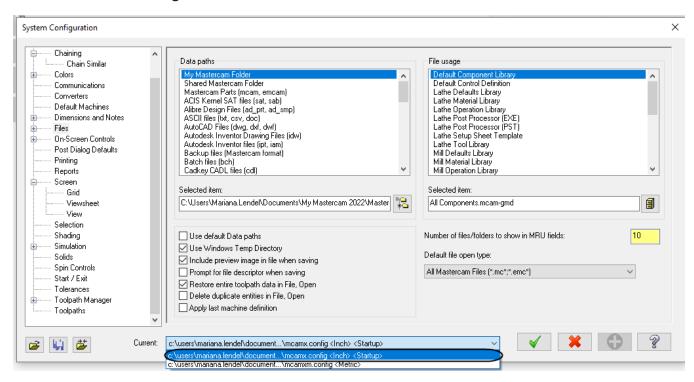

The Toolpaths Manager, Solids Manager, or Planes Manager can be hidden to gain more space in the graphics area for creating geometry. Use Auto Hide icon to close all Toolpaths, Solids, Planes and Levels Manager panels.


■ The panels will be hidden to the left of the graphics window as shown or at the bottom of the manager as shown previously.

- To un-hide them, click on one of the managers to open it and then click again on the **Auto Hide** icon a shown.
- Selecting the X (Close icon) instead of the Auto Hide will close the manager panel.

 To re-open them, from the View tab, select
 Toolpaths, Solids,
 Planes or Levels as shown.

STEP 6: SETTING MASTERCAM TO IMPERIAL


In this step you will learn how to set the imperial system as your default. You will have to select the **Backstage** options and select the system configuration.

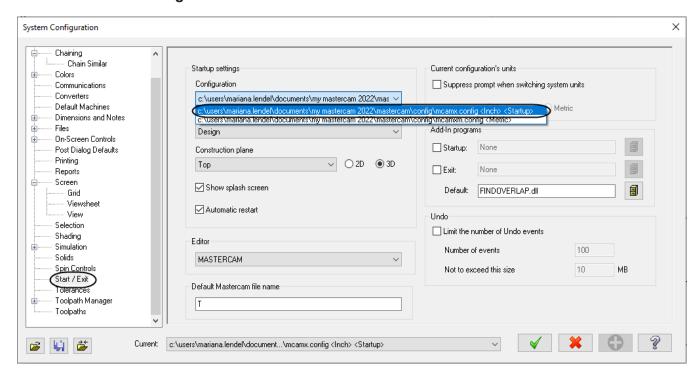
6.1 Setting Mastercam to inch for the current session only

Note: You may need to switch Mastercam to run in Inch mode.

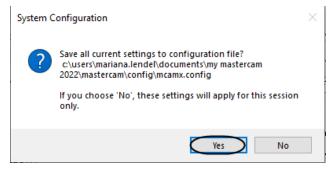
File

- Configuration.
 - Select the drop down arrow beside **Current** as shown.
 - Select mcamx.config < Inch > as shown.

■ Select the **OK** button to exit the **System Configuration** dialog box.


Note: If you have open a drawing done in metric on the screen it may ask you to scale the current part to imperial. Choose Yes if you wish to do this.

6.2 Setting Mastercam to Imperial as a default


Note: If you wish to always work in Imperial mode, follow these steps to save Imperial as your current configuration file.

File

- Configuration.
 - Select Start/Exit from the configuration topics.
 - Select the drop down arrow below **Configuration** in the **Startup** settings area as shown
 - Select mcamx.config <Inch> as shown.

- Select the **OK** button to exit the **System** Configuration dialog box.
- Mastercam will then prompt you to save these settings to your current configuration file, select Yes.

STEP 7: SETTING THE GRID

Before beginning to create geometry, it is highly recommended to enable the Grid. The Grid will show you where the origin is and the orientation of the Grid gives you a quick preview of the plane you are working in.

File

- Configuration.
 - Select Screen from the configuration Topics.
 - Select the plus sign (+) beside **Screen** as shown.

- In Grid Settings, change the Spacing to X = 0.25 and Y = 0.25.
- Set the Size to 1.0.
- Choose the **OK** button to exit.
- Select the Yes button to save the settings in the System Configuration.
- To see the Grid in the graphics window, from the View tab, enable Show Grid as shown.

■ The grid should look as shown.

×

CONVENTIONS USED IN THIS BOOK:

We have attempted to make this manual as uncluttered as possible and provide you with reference information when it is appropriate. It is not intended to be a Reference Guide or all-encompassing user manual.

The Text Styles Used Are The Following:

Standard Text - Represents normal wording needed to provide you the instructions.

STEP 8: STEP TITLES

8.1 Sub step titles

Information about the current step, terms or parameter definitions describing the parameters and description.

Bold Text - Represents menu commands, dialog box settings or other similar items from the screen.

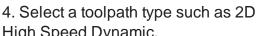
Note: Represents information about the process/step that is important or may require an explanation.

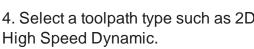
■ Bulleted text are step by step instructions that are to be followed.

The files used in this book are available for download at http://www.emastercam.com/files/.

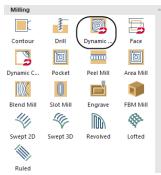
Getting Started Mastercam® Workflow

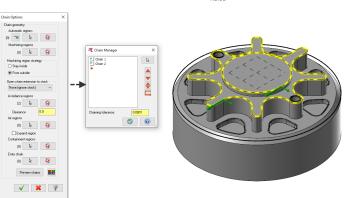
, K

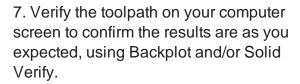

MASTERCAM® WORKFLOW


The process to create or import the geometry and to generate a toolpath will be repeated over and over through the tutorials in this book. You will find the process simple and straightforward once you have programmed a few parts. The following is an outline of the process we will follow to create programs:

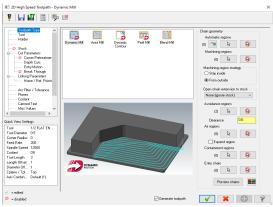
1. Create or import the part geometry.

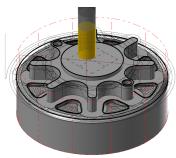

- 2. Select the Machine type.
- 3. Define the stock size that your part will be cut from and set tool information.

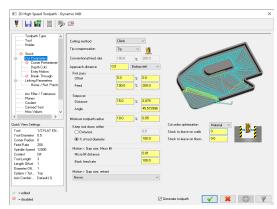


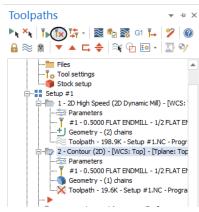


5. Select the geometry of the part you will cut with the different selection options.

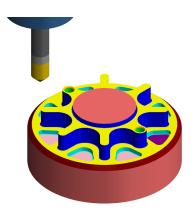

Getting Started Mastercam® Workflow

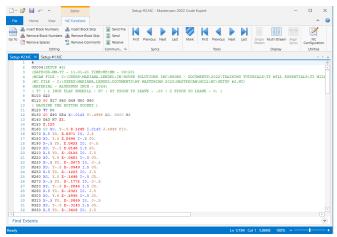

6. Fill in the necessary information on the parameter pages that appear for the toolpath type you selected.



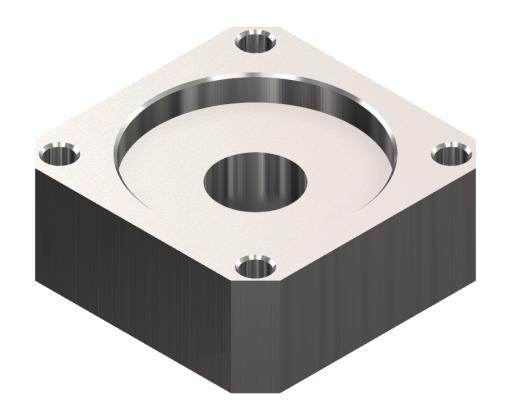

8. Make any changes as required by changing parameters.

9. If the **Generate toolpath** is selected in the toolpath parameters, you can skip this step as the toolpath will be automatically updated. Otherwise, **Regenerate** the "**Dirty**" operation to update the parameter changes.




Getting Started Mastercam® Workflow

10. Verify again to make sure the toolpath is correct.

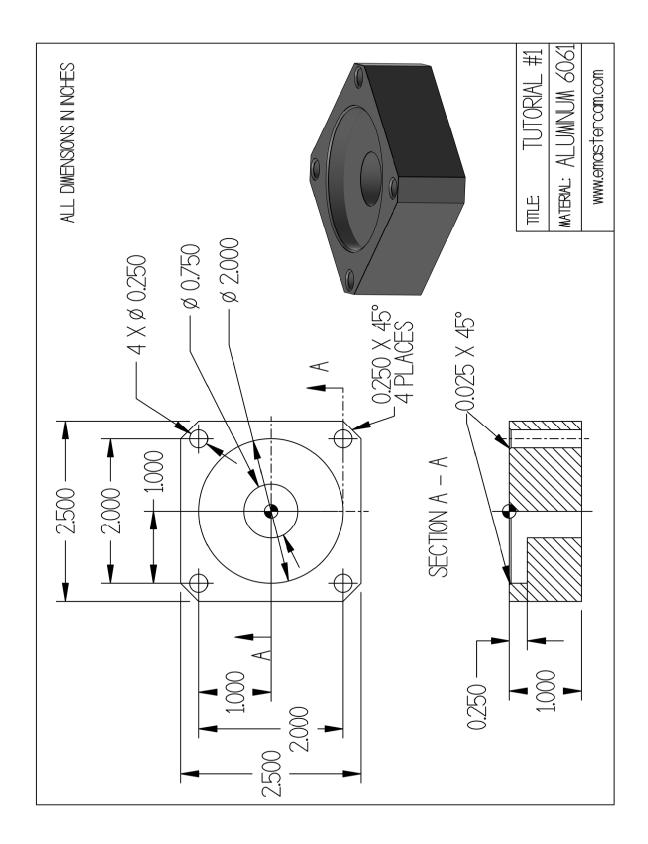


11. Convert the graphical toolpath information into machine code by Post Processing and sending it to the CNC machine.

Note: Mastercam HLE does not support post processing.

Tutorial 1: Geometry Creation

Overview Of Steps Taken To Create The Part Geometry:


From Drawing to CAD Model:

- The student should examine the drawing on the following page to understand what part is being created in the tutorial.
- From the drawing we can decide how to create the geometry in Mastercam.

Create the 2D CAD Model:

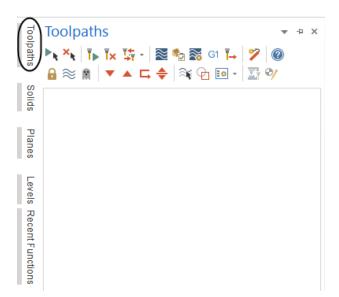
- The student will create the Top 2D geometry needed to create the toolpaths.
- Geometry creation commands such as **Rectangle**, **Circle Center Point**, and **Chamfer Entities** will be used.

TUTORIAL #1 DRAWING

STEP 1: SETTING UP THE GRAPHICAL USER INTERFACE

Please refer to the Getting Started section for more info on how to set up the graphical user interface. In this step, you will learn how to hide the manager panels to gain more space in the graphics window.

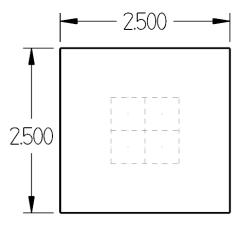
■ Use the Auto Hide icon to hide all Manager panels.



■ The panels will be hidden to the left of the graphics window as shown.

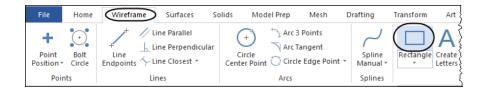
Toolpaths Solids Planes Levels Recent Functions

Note: To un-hide them temporally, you can click on one of the Managers to open it as shown.

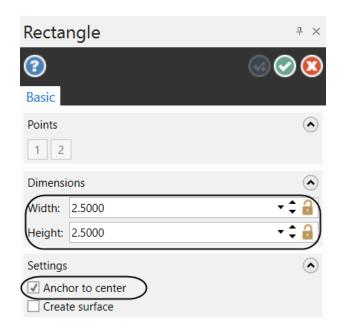

While creating the geometry, keep the Manager panels hidden. This ensures more space in the graphics window for the geometry.

STEP 2: CREATE ONE RECTANGLE

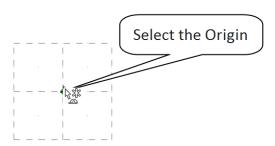
In this step, you will learn how to create a rectangle given the width, the height, and the anchor position. You will create the 2.5" by 2.5" rectangle with the center anchored to the Origin.


Step Preview:

2.1 Create a 2.5" by 2.5" Rectangle


Wireframe

■ From the **Shapes** group, select **Rectangle**.



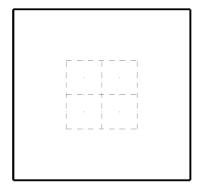
 In the Rectangle panel, enter the Width and Height and enable Anchor to center as shown.

Note: Make sure that **Create surface** is not selected. **Anchor to center** sets the base point of the rectangle to its center and draws the rectangle outward from the center. **Create surface** creates a surface inside of the rectangle. Surface creation and Surface toolpath are covered in Mill Advanced.

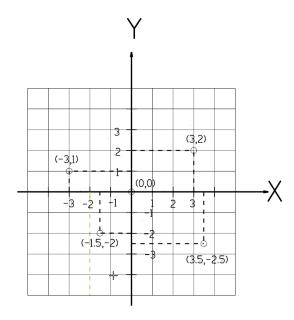


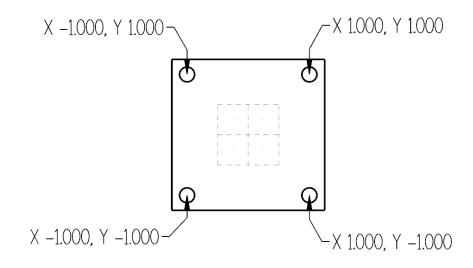
Select the position of the base point as shown.

■ A preview of the geometry should look as shown.


Note: The geometry should appear in cyan blue color which is the color for live entities. While the rectangle is live, you can adjust the dimensions or select a new base point.

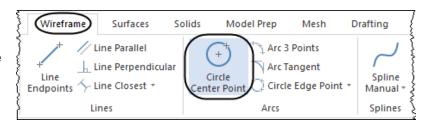
■ Select the **OK** button to exit the **Rectangle** command.


■ The geometry should look as shown.

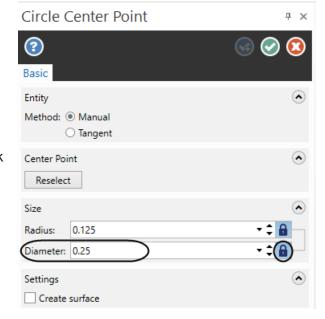

Note: While creating geometry for this tutorial, if you make a mistake, you can undo the last step using the **Undo** icon. You can undo as many steps as needed. If you delete or undo a step by mistake, just use the **Redo** icon. To delete unwanted geometry, select the geometry first and then press **Delete** from the keyboard. To zoom or un-zoom, move the cursor in the center of the geometry and scroll up or down the mouse wheel.

STEP 3: CREATE THE 1/4" DIAMETER CIRCLES

In this step, you will create circles for which you know the diameter and the locations. To use **Circle Center Point**, you need to know the center point and the radius or the diameter of the circle. To complete this step, you will need to know the **Cartesian Coordinate System**. A **Cartesian Coordinate System** is a coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the signed distances from the point to two fixed perpendicular directed lines, measured in the same unit of length as shown.



Step Preview:

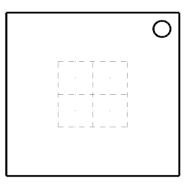


Wireframe

From the Arcs group, select Circle Center Point.

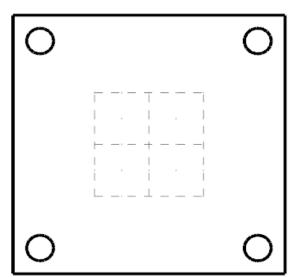
- Enter a **Diameter** of **0.25** in the panel as shown.
- To create all four circles, click on the lock icon to lock the value.

■ [Enter the center point]:
Select the AutoCursor
Fast Point icon from the
General Selection toolbar
and the field where you can
type the coordinates will
open at the upper left side of
the graphics window as
shown.

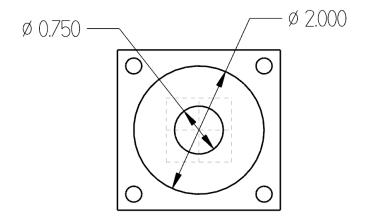


■ Type 1, 1 as shown.

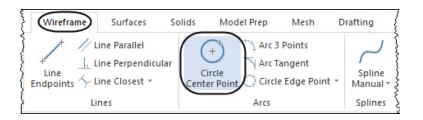
Note: When entering the coordinates for the center point, the first value is the **X** coordinate value, then the **Y** value followed by the **Z** value only if it is different from zero. The coordinate values are separated with commas. You do not need to use the coordinate labels if you enter the values in this order.


• Press Enter and the circle will be placed as shown.

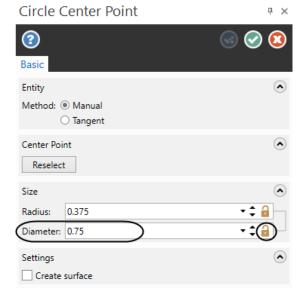
- [Enter the center point]: Select the **AutoCursor Fast Point** icon again and enter 1, -1.
- Press **Enter** to place the circle.
- [Enter the center point]: Select the **AutoCursor Fast Point** icon again and enter -1, 1.
- Press **Enter** to place the circle.
- [Enter the center point]: Select the **AutoCursor Fast Point** icon again and enter -1, -1.
- Press **Enter** to place the circle.
- Once complete choose the **OK** button to exit the command.


■ The geometry should look as shown.

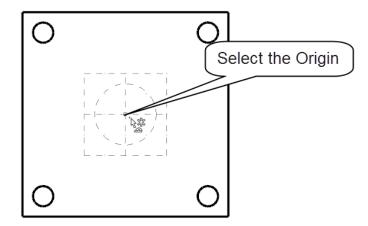
STEP 4: CREATE THE 3/4" & 2.0" DIAMETER CIRCLES


In this step, you will use the same **Circle Center Point** command to create circles for which you know the diameters and the locations.

Step Preview:



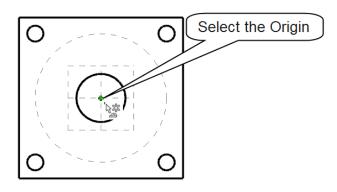
Wireframe


From Arcs group, select Circle Center Point.

■ Enter the **Diameter 0.75** in the panel and disable the lock icon as shown.

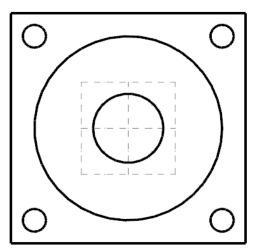
- [Enter the center point]: Move the cursor to the center of the rectangle until the cursor cue tip
 - changes to the Origin as shown.
- Click to select the Origin.

- Press Enter to see the circle preview.
- Press Enter again to finish the circle.


Note: While the circle is live, cyan color, the circle diameter and its location can be modified. To avoid this, you need to press **Enter** to finish the circle.

- In the **Diameter** field of the **Circle Center Point** panel, type **2.0** and press **Enter**.
- The panel should look as shown.

[Enter the center point]: Select the Origin as shown.


Note: Because the center of the 0.75" diameter circle is in the Origin, you could also select the point when the cursor center cue tip appears as shown.

■ Once complete, choose the **OK** button to exit the command.

■ The geometry should look as shown.

